Skip to main content
Log in

Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This work studied a bioremediation process of silver nanoparticles with the bacterium Chromobacterium violaceum. These nanoparticles were obtained from several washes of cotton fabrics impregnated with silver nanoparticles produced by the fungus Fusarium oxysporum. The optimized growth of C. violaceum for silver nanoparticles bioremediation was obtained. The effluents of wash process of the cotton fabric were efficiently treated with C. violaceum. This treatment was based on biosorption which was very efficient for the elimination of silver nanoparticles remaining in the wash water. The bacteria after biosorption were morphologically transformed, but the normal morphology after a new culture was completely restored. The process also allowed the recovery of silver material that was leached into the effluent for a reutilization avoiding any effect to the eco-environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benn TM, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139. doi:10.1021/es7032718

    Article  CAS  PubMed  Google Scholar 

  • Campbell SC, Olson GJ, Clark TR, McFeter G (2001) Biogenic production of cyanide and its application to gold recovery. J Ind Microbiol Biotechnol 26:134–139. doi:10.1038/sj.jim.7000104

    Article  CAS  PubMed  Google Scholar 

  • CETESB-Brazil DD—No. 195-2005-E (2005) CAS no. 7440-22-4, 23 Nov 2005. http://www.cetesb.sp.gov.br/Solo/relatorios/tabela_valores_2005.pdf

  • Choi O, Deng KK, Kim NJ, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074. doi:10.1016/j.watres.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  • Davies JC (2007) EPA and nanotechnology: oversight for the 21st century. Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • Davies RL, Etris SF (1997) The development and functions of silver in water purification and disease control. Catal Today 36:107–114. doi:10.1016/S0920-5861(96)00203-9

    Article  CAS  Google Scholar 

  • Durán N, Menck CFM (2001) Chromobacterium violaceum: a review of pharmacological and industrial perspectives. Crit Rev Microbiol 27:201–222. doi:10.1080/20014091096747

    Article  PubMed  Google Scholar 

  • Durán N, Marcato PD, Alves OL, De Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:8

    Article  Google Scholar 

  • Durán N, Alves OL, Esposito E, De Souza GIMH, Marcato PD (2006) Silver nanoparticles production process stabilized by protein in the antibacterial textile products and in the effluent treatment. Brazilian Patent PIBr 0605681-4

  • Durán N, Justo GZ, Melo PS, Martins D Jr, Cordi L (2007a) Violacein. An antitumoral, antibiotic and antiparasitary. Biotechnol Appl Biochem 48:127–133. doi:10.1042/BA20070115

    Article  PubMed  CAS  Google Scholar 

  • Durán N, Marcato PD, De Souza GIH, Alves OL, Esposito E (2007b) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3:203–208. doi:10.1166/jbn.2007.022

    Article  CAS  Google Scholar 

  • Edward-Jones V (2006) Antimicrobial and barrier effects of silver against methicillin-resistant Staphylococcus aureus. J Wound Care 15:285–290

    Google Scholar 

  • Faramarzi MA, Stagars M, Pensini E, Krebs W, Brandl H (2004) Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J Biotechnol 113:321–326. doi:10.1016/j.jbiotec.2004.03.031

    Article  CAS  PubMed  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668. doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  • FOE—Friends of the Earth (2008) Nanosilver—a threat to soil, water and human health? http://www.foeeurope.org/activities/nanotechnology/Documents/FoE_Nanosilver_report.pdf. Accessed 18 Aug 2008

  • Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19:857–871. doi:10.1080/08958370701432108

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol Biol Med 3:95–101. doi:10.1016/j.nano.2006.12.001

    Article  CAS  Google Scholar 

  • Krizkova S, Ryant P, Krystofova O, Adam V, Galiova M, Beklova M, Babula P, Kaiser J, Novotny K, Novotny J, Liska M, Malina R, Zehnalek J, Hubalek J, Havel L, Kizek R (2007) Multi-instrumental analysis of tissues of sunflower plants treated with silver(I) ions—plants as bioindicators of environmental pollution. Sensors 8:445–463. doi:10.3390/s8010445

    Article  Google Scholar 

  • Mikelova R, Baloun J, Petrlova J, Adam V, Havel L, Petrek H, Horna A, Kizek R (2007) Electrochemical determination of Ag-ions in environment waters and their action on plant embryos. Bioelectrochemistry 70:508–518. doi:10.1016/j.bioelechem.2006.12.001

    Article  CAS  PubMed  Google Scholar 

  • Morris J, Willis J (2007) U.S. Environmental Protection Agency nanotechnology white paper. U.S. Environmental Protection Agency, Washington, DC, Feb 2007

  • Mueller N, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42:4447–4453. doi:10.1021/es7029637

    Article  CAS  PubMed  Google Scholar 

  • NNCO—National Nanotechnology Coordination Office (2006) Environmental, health, and safety research needs for engineered nanoscale materials. NNCO, Arlington, Sept 2006

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  PubMed  Google Scholar 

  • Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T, Zboril R (2007) Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B 110:16248–16253

    Article  CAS  Google Scholar 

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J Mater Sci Technol 24:192–196

    CAS  Google Scholar 

  • Schnippering M, Powell HV, Zhang M, Macpherson JV, Unwin PR, Mazurenka M, Mackenzie SR (2008) Surface assembly and redox dissolution of silver nanoparticles monitored by evanescent wave cavity ring-down spectroscopy. J Phys Chem C 112:15274–15280

    Article  CAS  Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171

    Article  CAS  Google Scholar 

  • Smith AD, Hunt RJ (1985) Solubilization of gold by Chromobacterium violaceum. J Chem Technol Biotechnol 35B:110–116

    Article  CAS  Google Scholar 

  • Tortora GJ, Funke BR, Case CL (2002) Microbiologia. Artmed, Santa Catarina

    Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  PubMed  Google Scholar 

  • Zeiri L, Bronk BV, Shabtai Y, Czégé J, Efrima S (2002) Silver metal induced surface enhanced Raman of bacteria. Colloid Surf A Physicochem Eng Asp 208:357–362

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support from CNPq, FAPESP, and Brazilian Nanobiotechnology Network (CNPq/MCT) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Durán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durán, N., Marcato, P.D., Alves, O.L. et al. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process. J Nanopart Res 12, 285–292 (2010). https://doi.org/10.1007/s11051-009-9606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9606-1

Keywords

Navigation