Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 261–271 | Cite as

On the enzymatic formation of platinum nanoparticles

  • Y. Govender
  • T. L. Riddin
  • M. Gericke
  • C. G. Whiteley
Research Paper


A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 °C, respectively, a half-life stability of 36 min and a Vmax and Km of 3.57 nmol min−1 mL−1 and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H2PtCl6) at 1 or 2 mM with a Ki value of 118 μM. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 °C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 °C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.


Platinum Nanoparticles Hydrogenase Fusarium Synthesis 


  1. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J Am Chem Soc 124:12108–12109. doi:10.1021/ja027296o CrossRefPubMedGoogle Scholar
  2. Ahmad A, Senepati S, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 19:3550–3553. doi:10.1021/la026772l CrossRefGoogle Scholar
  3. Ahmad A, Senepati S, Khan MI, Kumar R, Sastry M (2005) Extra-/Intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Tricothecium sp. J Biomed Nanotechnol 1:47–53. doi:10.1166/jbn.2005.012 CrossRefGoogle Scholar
  4. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164. doi:10.1016/j.colsurfb.2005.11.026 CrossRefPubMedGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 CrossRefPubMedGoogle Scholar
  6. Brust M, Kiely CJ (2002) Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. J Coll Surf A 202:175–186. doi:10.1016/S0927-7757(01)01087-1 CrossRefGoogle Scholar
  7. De Luca G, de Philip P, Dermoun Z, Rousset M, Vermeglio A (2001) Reduction of technetium (VII) by Desulfovibrio fructosovorans is mediated by the nickel–iron hydrogenase. Appl Environ Microbiol 67:4583–4587. doi:10.1128/AEM.67.10.4583-4587.2001 CrossRefPubMedGoogle Scholar
  8. Duff DG, Edwards PP, Johnson BFG (1995) Formation of a polymer-protected platinum sol: a new understanding of the parameters controlling morphology. J Phys Chem 99:15934–15944. doi:10.1021/j100043a036 CrossRefGoogle Scholar
  9. Elliot SJ, Leger C, Pershad HR, Hirst J, Heffron K, Ginet N et al (2002) Detection and interpretation of redox potential optima in the catalytic activity of enzymes. Biochim Biophys Acta 1555:54–59. doi:10.1016/S0005-2728(02)00254-2 CrossRefGoogle Scholar
  10. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troianl HE, Santiago P et al (2002) Formation and growth of Au nanoparticles inside alfalfa plants. Nanotechnol Lett 2:397–401ADSGoogle Scholar
  11. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulate. Mater Lett 61:3984–3987. doi:10.1016/j.matlet.2007.01.018 CrossRefGoogle Scholar
  12. Huang H, Yang X (2005) One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids Surf A Physicochem Eng Asp 255:11–17. doi:10.1016/j.colsurfa.2004.12.020 CrossRefGoogle Scholar
  13. Huang J, He C, Liu X, Xiao Y, Mya KY, Chai J (2004) Formation and characterisation of water soluble platinum nanoparticles using a unique approach based on the hydrosilylation reaction. Langmuir 20:5145–5148. doi:10.1021/la036135a CrossRefPubMedGoogle Scholar
  14. Huang J, Liu Z, Liu X, He C, Chow SY, Pan J (2005) Platinum nanoparticles from the hydrosilylation reaction: capping agents, physical characterisations, and electrochemical properties. Langmuir 21:699–704. doi:10.1021/la0482148 CrossRefPubMedGoogle Scholar
  15. Kamachi T, Uno S, Hiraoshi T, Okura I (1995) Purification and properties of intact hydrogenase from Desulfovibrio vulgaris (Miyazaki). J Mol Catal Chem 95:93–98. doi:10.1016/1381-1169(94)00147-2 CrossRefGoogle Scholar
  16. Klaus T, Joerger R, Olsson E, Granqviat GC (1999) Silver based crystalline nanoparticles, microbial fabricated. Proc Natl Acad Sci USA 96:13611–13614. doi:10.1073/pnas.96.24.13611 CrossRefPubMedADSGoogle Scholar
  17. Klaus-Joerger T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal accumulating bacteria and their potential for materials science. Trends Biochem Sci 19:15–20Google Scholar
  18. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653. doi:10.1016/j.jbiotec.2006.11.014 CrossRefPubMedGoogle Scholar
  19. Kowshik M, Ashtaputre S, Kharrazi T, Vogel W, Urban J, Kulkarni SK et al (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100. doi:10.1088/0957-4484/14/1/321 CrossRefADSGoogle Scholar
  20. Kumar A, Joshi HM, Mandal AB, Srivastava R, Adyanthaya SD, Pasricha R et al (2004) Phase transfer of platinum nanoparticles from aqueous to organic solutions using fatty amine molecules. J Chem Sci 116:293–300. doi:10.1007/BF02708280 CrossRefGoogle Scholar
  21. Lengke MF, Fleet ME, Southam G (2006) Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV)—chloride complex. Langmuir 22:7318–7323. doi:10.1021/la060873s CrossRefPubMedGoogle Scholar
  22. Liu Z, Ling XY, Su X, Lee JY (2004) Carbon supported Pt and PtRu Nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108:8234–8240. doi:10.1021/jp049422b CrossRefGoogle Scholar
  23. Liu Z, Shamsuzzoha M, Ada ET, Reichat M, Nikles DE (2007) Synthesis and activation of platinum nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sour 164:472–480. doi:10.1016/j.jpowsour.2006.10.104 CrossRefGoogle Scholar
  24. Lloyd JR (2003) Microbial reduction of metals and radionuclides. FEMS Microbiol Rev 27:411–425. doi:10.1016/S0168-6445(03)00044-5 CrossRefPubMedGoogle Scholar
  25. Lloyd JR, Sole VA, Van Praagh CV, Lovely DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66:3743–3749. doi:10.1128/AEM.66.9.3743-3749.2000 CrossRefPubMedGoogle Scholar
  26. Lovely DR, Widman PK, Woodward JC, Phillips EJ (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576Google Scholar
  27. Mukherjee P, Senepati S, Mandal D, Ahmad A, Khan MI, Kumar R et al (2002) Extracellular synthesis of gold nanoparticles by the fungus, Fusarium oxysporum. Chembiochem 5:461–463. doi :10.1002/1439-7633(20020503)3:5<461::AID-CBIC461>3.0.CO;2-XCrossRefGoogle Scholar
  28. Nadagouda MN, Varma RS (2006) Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density assisted self assembly of nanospheres, wires and rods. Green Chem 8:516–518. doi:10.1039/b601271j CrossRefGoogle Scholar
  29. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298. doi:10.1021/cg0255164 CrossRefGoogle Scholar
  30. Ngwenya N, Whiteley CG (2006) Recovery of rhodium (III) from solutions and industrial wastewaters by a sulphate reducing consortium. Biotechnol Prog 22:1604–1611. doi:10.1021/bp060167h PubMedGoogle Scholar
  31. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as a precursor. J Am Chem Soc 123:183–184. doi:10.1021/ja003633m CrossRefPubMedGoogle Scholar
  32. Qu L, Peng ZA, Peng X (2001) Alternative routes toward high quality CdSe nanocrystals. Nano Lett 1:333–337. doi:10.1021/nl0155532 CrossRefADSGoogle Scholar
  33. Rashamuse K, Whiteley CG (2007) Bioreduction of platinum (IV) from aqueous solution using sulphate reducing bacteria. Appl Microbiol Biotechnol 75:1429–1435. doi:10.1007/s00253-007-0963-3 CrossRefPubMedGoogle Scholar
  34. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f.sp. Lycopersici using response surface methodology. Nanotechnology 17:1–8. doi:10.1088/0957-4484/17/1/001 CrossRefGoogle Scholar
  35. Shahverdi AR, Miniaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923. doi:10.1016/j.procbio.2007.02.005 CrossRefGoogle Scholar
  36. Shukla N, Svedberg EB, Ell J (2007) Surfactant isomerization and dehydrogenation of FePt nanoparticles. Colloids Surf A Physicochem Eng Asp 301:113–116Google Scholar
  37. Tang Z, Geng D, Lu G (2005) Size controlled synthesis of colloid platinum nanoparticles and their catalytic activity for the electrocatalytic oxidation of carbon monoxide. J Coll Inter Sci 287:159–166. doi:10.1016/j.jcis.2005.01.096 CrossRefGoogle Scholar
  38. Willner I, Baron R, Willner B (2006) Growing metal nanoparticles by enzymes. Adv Math 18:1109–1120. doi:10.1002/adma.200501865 CrossRefGoogle Scholar
  39. Winter G, Buhrke T, Lenz O, Jones AK, Forgber M, Friedrich B (2005) A model system for [NiFe] hydrogenase maturation studies: purification of an active site containing hydrogenase large subunit without small subunit. FEBS Lett 579:4292–4296. doi:10.1016/j.febslet.2005.06.064 CrossRefPubMedGoogle Scholar
  40. Xiao Y, Pavlov V, Levine S, Niazov T, Markovitch G, Willner I (2004) Catalytic growth of Au nanoparticles by NAD (P) H cofactors: optical sensors for NAD (P)+-dependent biocatalyzed transformations. Angew Chem Int Ed Engl 43:4519–4522. doi:10.1002/anie.200460608 CrossRefPubMedGoogle Scholar
  41. Yang W, Ma Y, Tang J, Yang X (2007) Green synthesis of monodisperse platinum nanoparticles and their catalytic properties. Colloids Surf A Physicochem Eng Asp 302:628–633. doi:10.1016/j.colsurfa.2007.02.028 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Y. Govender
    • 1
  • T. L. Riddin
    • 1
  • M. Gericke
    • 2
  • C. G. Whiteley
    • 1
  1. 1.Department of Biochemistry, Microbiology & BiotechnologyRhodes UniversityGrahamstownSouth Africa
  2. 2.MINTEKRandburgSouth Africa

Personalised recommendations