Rheological behaviour of ethylene glycol-titanate nanotube nanofluids

  • Haisheng Chen
  • Yulong Ding
  • Alexei Lapkin
  • Xiaolei Fan
Brief Communication

Abstract

Experimental work has been performed on the rheological behaviour of ethylene glycol based nanofluids containing titanate nanotubes over 20–60 °C and a particle mass concentration of 0–8%. It is found that the nanofluids show shear-thinning behaviour particularly at particle concentrations in excess of ~2%. Temperature imposes a very strong effect on the rheological behaviour of the nanofluids with higher temperatures giving stronger shear thinning. For a given particle concentration, there exists a certain shear rate below which the viscosity increases with increasing temperature, whereas the reverse occurs above such a shear rate. The normalised high-shear viscosity with respect to the base liquid viscosity, however, is independent of temperature. Further analyses suggest that the temperature effects are due to the shear-dependence of the relative contributions to the viscosity of the Brownian diffusion and convection. The analyses also suggest that a combination of particle aggregation and particle shape effects is the mechanism for the observed high-shear rheological behaviour, which is also supported by the thermal conductivity measurements and analyses.

Keywords

Rheological behaviour Ethylene glycol Titanate nanotube Nanofluid Thermal conductivity 

References

  1. Abdulagatov MI, Azizov ND (2006) Experimental study of the effect of temperature, pressure and concentration on the viscosity of aqueous NaBr solutions. J Solut Chem 35(5):705–738. doi:10.1007/s10953-006-9020-6 CrossRefGoogle Scholar
  2. Barnes HA, Hutton JF, Walters K (1989) An introduction to rheology. Elsevier Science B.V., NetherlandsMATHGoogle Scholar
  3. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14(22):3370–3377CrossRefGoogle Scholar
  4. Bird RB, Steward WE and Lightfoot EN (2002) Transport Phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  5. Brenner H, Condiff DW (1974) Transport mechanics in systems of orientable particles, Part IV. Convective Transprort. J Colloid Inter Sci 47(1):199–264CrossRefGoogle Scholar
  6. Chen HS, Ding YL, He YR, Tan CQ (2007a) Rheological behaviour of ethylene glycol based titania nanofluids. Chem Phys Lett 444(4–6):333–337CrossRefADSGoogle Scholar
  7. Chen HS, Ding YL, Tan CQ (2007b) Rheological behaviour of nanofluids. New J Phys 9(367):1–25ADSGoogle Scholar
  8. Chen HS, Yang W, He YR, Ding YL, Zhang LL, Tan CQ, Lapkin AA, Bavykin DV (2008) Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes under the laminar flow conditions. Powder Technol 183:63–72CrossRefGoogle Scholar
  9. Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles In: Siginer DA, Wang HP (eds) Developments applications of non-newtonian flows, FED-vol 231/MD-vol 66. ASME, New York, pp 99–105Google Scholar
  10. Chow TS (1993) Viscosities of concentrated dispersions. Phys Rev E 48:1977–1983CrossRefADSGoogle Scholar
  11. Das SK, Putra N, Roetzel W (2003) Pool boiling characteristics of nano-fluids. Int J Heat Mass Transfer 46:851–862CrossRefGoogle Scholar
  12. Ding YL, Alias H, Wen DS, Williams RA (2006) Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). Int J Heat Mass Transf 49(1–2):240–250CrossRefGoogle Scholar
  13. Doi M, Edwards SF (1978a) Dynamics of rod-like macromolecules in concentrated solution, Part 1. J Colloid Sci 74:560–570Google Scholar
  14. Doi M, Edwards SF (1978b) Dynamics of rod-like macromolecules in concentrated solution, Part 2. J Colloid Sci 74:918–932Google Scholar
  15. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720CrossRefADSGoogle Scholar
  16. Egres RG, Wagner NJ (2005) The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transition. J Rheol 49:719–746CrossRefADSGoogle Scholar
  17. Einstein A (1906) Eine neue Bestimmung der Molekul-dimension (a new determination of the molecular dimensions). Annal der Phys 19(2):289–306CrossRefADSGoogle Scholar
  18. Einstein A (1911) Berichtigung zu meiner Arbeit: Eine neue Bestimmung der Molekul-dimension (correction of my work: a new determination of the molecular dimensions). Ann der Phys 34(3):591–592CrossRefADSGoogle Scholar
  19. Goodwin JW, Hughes RW (2000) Rheology for chemists—an introduction. The Royal Society of Chemistry, UKGoogle Scholar
  20. Haas W, Zrinyi M, Kilian HG, Heise B (1993) Structural analysis of anisometric colloidal iron(III)-hydroxide particles and particle-aggregates incorporated in poly(vinyl-acetate) networks. Colloid Polym Sci 271:1024–1034CrossRefGoogle Scholar
  21. Hamilton RL, Crosser OK (1962) Thermal Conductivity of heterogeneous two-component systems. I&EC Fundam 125(3):187–191CrossRefGoogle Scholar
  22. He YR, Jin Y, Chen HS, Ding YL, Cang DQ (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50(11–12):2272–2281MATHCrossRefGoogle Scholar
  23. Hobbie EK, Fry DJ (2006) Nonequilibrium phase diagram of sticky nanotube suspensions. Phys Rev Lett 97:036101PubMedCrossRefADSGoogle Scholar
  24. Keblinski P, Eastman JA and Cahill DG (2005) Nanofluids for thermal transport, Mater Today, June Issue, 36–44Google Scholar
  25. Krishnamurthy S, Lhattacharya P, Phelan PE, Prasher RS (2006) Enhanced mass transport of in nanofluids. Nano Lett 6(3):419–423PubMedCrossRefADSGoogle Scholar
  26. Kwak K, Kim C (2005) Viscosity and thermal conductivity of copper oxide nanofluid dispersed in ethylene glycol. Korea-Aust Rheol J 17(2):35–40MathSciNetGoogle Scholar
  27. Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  28. Larson RG (2005) The rheology of dilute solutions of flexible polymers: progress and problems. J Rheol 49:1–70CrossRefADSGoogle Scholar
  29. Lee D, Kim J, Kim B (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328PubMedCrossRefGoogle Scholar
  30. Lin JM, Lin TL, Jeng U, Zhong Y, Yeh C, Chen T (2007) Fractal aggregates of fractal aggregates of the Pt nanoparticles synthesized by the polyol process and poly(N-vinyl-2-pyrrolidone) reduction. J Appl Crystallogr 40:s540–s543CrossRefGoogle Scholar
  31. Micali N, Villari V, Castriciano MA, Romeo A, Scolaro LM (2006) From fractal to nanorod porphyrin J-aggregates. Concentration-induced tuning of the aggregate size. J Phys Chem B 110:8289–8295PubMedCrossRefGoogle Scholar
  32. Mohraz A, Moler DB, Ziff RM, Solomon MJ (2004) Effect of monomer geometry on the fractal structure of colloidal rod aggregates. Phys Rev Lett 92:155503PubMedCrossRefADSGoogle Scholar
  33. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2-water based nanofluids. Int J Therm Sci 44:367–373CrossRefGoogle Scholar
  34. Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81(10):6692–6699CrossRefADSGoogle Scholar
  35. Nan CW, Shi Z, Lin Y (2003) A simple model for thermal conductivity of carbon nanotube-based composites. Chem Phys Lett 375(5–6):666–669CrossRefADSGoogle Scholar
  36. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:150–170ADSCrossRefGoogle Scholar
  37. Prasher R, Song D, Wang J (2006a) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108-1-3ADSGoogle Scholar
  38. Prasher R, Phelan PE, Bhattacharya P (2006b) Effect of aggregation kinetics on thermal conductivity of nanoscale colloidal solutions (nanofluids). Nano Lett 6(7):1529–1534PubMedCrossRefADSGoogle Scholar
  39. Russel WB, Saville DA, Scholwater WR (1991) Colloidal dispersions. Cambridge University Press, CambridgeMATHGoogle Scholar
  40. Waite TD, Cleaver JK, Beattie JK (2001) Aggregation kinetics and fractal structure of gamma-alumina assemblages. J Colloid Interface Sci 241:333–339CrossRefGoogle Scholar
  41. Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19CrossRefGoogle Scholar
  42. Wang XW, Xu XF, Choi SUS (1999) Thermal conductivity of nanoparticle–fluid mixture. J Thermphys Heat Transf 13:474CrossRefGoogle Scholar
  43. Wang BX, Zhou LP, Peng XF (2003) A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int J Heat Mass Transf 46:2665–2672MATHCrossRefGoogle Scholar
  44. Wasan DT, Nikolov AD (2003) Spreading of nanofluids on solids. Nature 423(6936):156–159PubMedCrossRefADSGoogle Scholar
  45. Wen DS, Ding YL (2005) Formulation of nanofluids for natural convective heat transfer applications. Int J Heat Fluid Flow 26:855–864CrossRefGoogle Scholar
  46. Xuan YM, Li Q, Hu J,WF (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49(4):1038–1043CrossRefGoogle Scholar
  47. Yang Y, Zhong ZG, Grulke EA, Anderson WB, Wu G (2005) Heat transfer properties of nanoparticle-in-fluid dispersion (nanofluids) in laminar flow. Int J Heat Mass Transf 48:1107–1116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Haisheng Chen
    • 1
  • Yulong Ding
    • 1
  • Alexei Lapkin
    • 2
  • Xiaolei Fan
    • 2
  1. 1.Institute of Particle Science and EngineeringUniversity of LeedsLeedsUK
  2. 2.Department of Chemical EngineeringUniversity of BathBathUK

Personalised recommendations