Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1485–1499 | Cite as

Bistability, hysteresis and fluctuations in adiabatic ensembles of nanoparticles

Research Paper

Abstract

A presuppositionless thermodynamic analysis of the phase transformations of nanoparticles in an adiabatic enclosure leads to a series of predictions of the transformation behavior. These predictions are perfectly confirmed with experimental results, which have been difficult to be explained until now. The most important predicted and validated phenomena are: (i) a broad range of bistability or hysteresis in the vicinity of the transformation temperature, (ii) the width of this range increases with increasing particle size and with increasing temperature, and (iii) the transformation temperature may be higher than the one for bulk material. As in reality, an experiment can never be performed in an idealized isothermal or adiabatic environment; one always has a mixture of these conditions. This influences the results. The outcome of this analysis explains why different authors report, probably dependent on experimental conditions, widely scattering results.

Keywords

Nanocrystalline material Transformation Thermodynamics Fluctuation Bistability Hysteresis Theory Modeling 

References

  1. Ajayan PM, Marks LD (1988) Quasimelting of small particles. Phys Rev Lett 60:585–587. doi:10.1103/PhysRevLett.60.585 PubMedCrossRefADSGoogle Scholar
  2. Basso V, Sasso CP, Bertotti G, LoBue M (2008) Instabilities in adiabatic transformations of first-order phase transitions in a model with bistable features. J Phys B 403:312–315. doi:10.1016/j.physb.2007.08.037 CrossRefGoogle Scholar
  3. Callen HB (1985) Thermodynamics and an introduction of thermostatistics. Wiley, New YorkGoogle Scholar
  4. Cheyssac P, Kofman R, Garrigos R (1988) Solid–liquid phase transitions optically investigated for distributions of metallic aggregates. Absence of hysteresis for the smallest sizes. Phys Scr 38:164–168. doi:10.1088/0031-8949/38/2/009 CrossRefADSGoogle Scholar
  5. Cheyssac P, Kofman R, Mattei G, Merli PG, Migliori A, Stella A (1995) Fundamental properties of lead and tin nanocrystals in a dielectric matrix. Superlattices Microstruct 17:47–48. doi:10.1006/spmi.1995.1011 CrossRefADSGoogle Scholar
  6. De Souza Neto EA, Feng YT (1999) On the determination of the path direction for arc-length methods in the presence of bifurcations and “snap backs”. Comput Methods Appl Mech Eng 179:81–89. doi:10.1016/S0045-7825(99)00042-0 MATHCrossRefGoogle Scholar
  7. Haro-Poniatowski E, Serna R, Afonso CN, Jouanne M, Morhange JF, Bosch P, Lara VH (2004) Hysteresis in the melting kinetics of Bi nanoparticles. Thin Solid Films 453–454:467–470CrossRefGoogle Scholar
  8. Hendy SC (2005) Stability of phase coexistence in atomic clusters. Phys Rev B 71:115404-1–115404-5CrossRefADSGoogle Scholar
  9. Jaeger G (1998) The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci 53:51–81. doi:10.1007/s004070050021 MATHCrossRefMathSciNetGoogle Scholar
  10. Mayergoyz ID (1991) Mathematical models of hysteresis. Springer, New YorkMATHGoogle Scholar
  11. Minima S, Ichihashi T (1986) Structural instability of ultrafine particles of metals. Phys Rev Lett 56:616–619. doi:10.1103/PhysRevLett.56.616 CrossRefADSGoogle Scholar
  12. Nanda KK, Maisels A, Kruis FE, Fissan H, Stappert S (2003) Higher surface energy of free nanoparticles. Phys Rev Lett 91:106102-1–106102-4CrossRefADSGoogle Scholar
  13. Ohshima Y, Takayanagi K (1993) Solid liquid phase transition of tin particles observed by UHV high resolution transmission electron microscopy: pseudo crystalline phase. Z Phys D 27:287–294. doi:10.1007/BF01436546 CrossRefADSGoogle Scholar
  14. Scherbarchov D, Hendy SC (2005) Transition from icosahedral to decahedral structure in a coexisting solid–liquid nickel cluster. Phys Rev Lett 95: 116101-1–116101-5ADSGoogle Scholar
  15. Scherbarchov D, Hendy SC (2006) Solid–liquid coexistence and structural transitions in palladium clusters. Phys Rev B 73: 121402-1–121402-4ADSGoogle Scholar
  16. Schlesinger ME, Jacob S (2004) Advances in high-temperature calorimetry: a comparison. J Miner Met Mater Soc 56:37–40. doi:10.1007/s11837-004-0233-0 Google Scholar
  17. Stowell MJ (1970) The solid–liquid interfacial energy of lead from supercooling data. Philos Mag 22:1–6. doi:10.1080/14786437008228146 CrossRefADSGoogle Scholar
  18. Tetu A, Chevallier J, Bech Nielsen B (2008) InSb nanocrystals embedded in SiO2: strain and melting-point hysteresis. Mater Sci Eng B 147:141–143. doi:10.1016/j.mseb.2007.08.004 CrossRefGoogle Scholar
  19. Tognini P, Parravicini GB, Stella A, Fornari L, Kofman R, Cheyssac P, Giardini ME, Haller E (2000) Capacitance–conductance investigation on the phase transitions in Ga nanoparticles. Thin Solid Films 380:230–232. doi:10.1016/S0040-6090(00)01529-7 CrossRefADSGoogle Scholar
  20. Umantsev A (1997) Adiabatic phase transformations in confinement. J Chem Phys 107:1600–1616. doi:10.1063/1.475156 CrossRefADSGoogle Scholar
  21. Umantsev A, Olson GB (1993) Phase equilibria and transformations in adiabatic systems. Phys Rev E Stat Phys 48:4229–4249. doi:10.1103/PhysRevE.48.4229 CrossRefADSGoogle Scholar
  22. Vollath D, Fischer FD (2007) Structural fluctuations in nanoparticles. J Nanopart Res. doi:10.1007/s11051-007-9326-3
  23. Vollath D, Fischer FD (2008) Structural fluctuations in ensembles of nanoparticles. J Nanopart Res. doi:10.1007/s11051-008-9413-0
  24. Vollath D, Szabó DV (1994) Nanocoated particles: a special type of ceramic powder. NanoStruct Mater 4:927–938. doi:10.1016/0965-9773(94)90099-X CrossRefGoogle Scholar
  25. Vollath D, Szabó DV (1998) Synthesis of coated nanoparticulate ceramic powders. Mater Res Soc Symp Proc 520:143–148Google Scholar
  26. Vollath D, Wedemeyer H (1990) Aluminium doped lithium orthosilicate as a breeder material. Adv Ceram 27:3–12Google Scholar
  27. Wales DJ, Berry RS (1994) Coexistence in finite systems. Phys Rev Lett 73:2875–2878. doi:10.1103/PhysRevLett.73.2875 PubMedCrossRefADSGoogle Scholar
  28. Wang YD, Ren Y, Nie ZH, Liu DM, Zuo L, Choo H, Li H, Liaw PK, Yan JQ, McQueeney RJ, Richardson JW, Huq A (2007) Structural transition of ferromagnetic Ni2MnGa nanoparticles. J Appl Phys 101:063530-1–063530-6ADSGoogle Scholar
  29. Xu Q, Sharp D, Yuan CW, Yi DO, Liao CY, Glaeser AM, Minor AM, Beeman JW, Ridgway MC, Kluth P, Ager III JW, Chrzan DC, Haller EE (2006) Large melting-point hysteresis of Ge nanocrystals embedded in SiO2. Phys Rev Lett 97:155701-1–155701-4ADSGoogle Scholar
  30. Xu Q, Sharp D, Yuan CW, Yi DO, Liao CY, Glaeser AM, Minor AM, Beeman JW, Ridgway MC, Kluth P, Ager JWIII, Chrzan DC, Haller EE (2007) Superheating and supercooling of Ge nanocrystals embedded in SiO2. J Phys Conf Ser 61:1042–1046. doi:10.1088/1742-6596/61/1/206 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.NanoConsultingStutenseeGermany
  2. 2.Montanuniversität Leoben, Institute of MechanicsLeobenAustria

Personalised recommendations