One-step flame method for the synthesis of coated composite nanoparticles

Research Paper

Abstract

A simple in situ flame coating method has been developed by designing a new type of coflow diffusion flame burner having a sliding unit. The sliding unit was shown to be very effective in finding a right position where the precursor for coating layer should meet with core particles. SiO2-coated TiO2 nanoparticles were first prepared and whether most surfaces of particles were coated was examined by both direct observation of particles through a transmission electron microscope and Zeta potential measurements. Mean core sizes varied from 28 to 109 nm and mean coating thickness was about 2.4 nm for silica-coated titania particles. By simply changing chemical precursors, we demonstrated that SiO2-coated SnO2, SnO2-coated TiO2, SiO2–SnO2-coated TiO2 nanoparticles could be also synthesized.

Keywords

Flame method Aerosol coating Coated particles Composite particles 

References

  1. Akhtar MK, Xiong Y, Pratsinis SE (1991) Vapor synthesis of titania powder by titanium tetrachloride oxidation. AIChE J 37:1561–1570CrossRefGoogle Scholar
  2. Akurati KK, Dittmann R, Vital A, Klotz U, Hug P, Graule T, Winterer M (2006) Silica-based composite and mixed-oxide nanoparticles from atmospheric pressure flame synthesis. J Nanopart Res 8:379–393. doi:10.1007/s11051-005-9024-y CrossRefGoogle Scholar
  3. Aliev FG, Correa-Duarte MA, Mamedov A, Ostrander JW, Griersig M, Liz-Marzán LM, Kotov NA (1999) Layer-by-layer assembly of core-shell magnetite nanoparticles: effect of silica coating on interparticle interactions and magnetic properties. Adv Mater 11:1006–1010. doi:10.1002/(SICI)1521-4095(199908)11:12<1006::AID-ADMA1006>3.0.CO;2-2 CrossRefGoogle Scholar
  4. Cho J, Choi M (2000) Determination of number density, size and morphology of aggregates in coflow diffusion flames using light scattering and local sampling. J Aerosol Sci 31:1077–1095. doi:10.1016/S0021-8502(99)00574-1 CrossRefGoogle Scholar
  5. Choi M, Cho J, Lee J, Kim HW (1999) Measurements of silica aggregate particle growth using light scattering and thermophoretic sampling in a coflow diffusion flame. J Nanopart Res 1(2):169–183. doi:10.1023/A:1010092113802 CrossRefGoogle Scholar
  6. Choi M, Hong C, Lee KH (2002) Jet assisted aerosol chemical vapor deposition for optical fiber synthesis. Aerosol Sci Technol 36:300–307. doi:10.1080/027868202753504498 CrossRefGoogle Scholar
  7. Choi M, Altman IS, Kim Y-J, Pikhitsa PV, Lee S, Park G-S, Jeong T, Yoo J-B (2004) Formation of shell-shaped carbon nanoparticles above a critical laser power in irradiated acetylene. Adv Mater 16:1721–1725. doi:10.1002/adma.200400179 CrossRefGoogle Scholar
  8. Ehrman SH, Friedlander SK, Zachariah MR (1998) Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame. J Aerosol Sci 29:687–706. doi:10.1016/S0021-8502(97)00454-0 CrossRefGoogle Scholar
  9. Fotou GP, Kodas TT (1997) Sequential gas-phase formation of Al2O3 and SiO2 layers on aerosol-made TiO2 particles. Adv Mater 9:420–423. doi:10.1002/adma.19970090513 CrossRefGoogle Scholar
  10. Hung C-H, Katz JL (1992) Formation of mixed oxide powders in flames: part I. TiO2–SiO2. J Mater Res 7:1861–1869. doi:10.1557/JMR.1992.1861 CrossRefADSGoogle Scholar
  11. Jiang J, Chen D-R, Biswas P (2007) Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size crystal phase and morphology. Nanotechnology 18:285603. doi:10.1088/0957-4484/18/28/285603 CrossRefGoogle Scholar
  12. Lee D, Choi M (2000) Control of size and morphology of nano particles using CO2 laser during flame synthesis. J Aerosol Sci 31:1145–1163. doi:10.1016/S0021-8502(00)00022-7 CrossRefGoogle Scholar
  13. Lee D, Choi M (2002) Coalescence enhanced synthesis of nanoparticles to control size, morphology and crystalline phase at high concentrations. J Aerosol Sci 33:1–16. doi:10.1016/S0021-8502(01)00155-0 CrossRefMathSciNetGoogle Scholar
  14. Lee S-K, Chung KW, Kim S-G (2002) Preparation of various composite TiO2/SiO2 ultrafine particles by vapor-phase hydrolysis. Aerosol Sci Technol 36:763–770. doi:10.1080/02786820290038456 CrossRefGoogle Scholar
  15. Lin Y-L, Wang T-J, Jin Y (2002) Surface characteristics of hydrous silica-coated TiO2 particles. Powder Technol 123:194–198. doi:10.1016/S0032-5910(01)00470-3 CrossRefGoogle Scholar
  16. Powell QH, Fotou GP, Kodas TT, Anderson BM, Guo Y (1997) Gas-phase coating of TiO2 with SiO2 in a continuous flow hot-wall aerosol reactor. J Mater Res 12:552–559. doi:10.1557/JMR.1997.0079 CrossRefADSGoogle Scholar
  17. Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24:197–219. doi:10.1016/S0360-1285(97)00028-2 CrossRefGoogle Scholar
  18. Santra S, Tapec R, Theodoropoulou N, Dobson J, Hebard A, Tan W (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir 17:2900–2906. doi:10.1021/la0008636 CrossRefGoogle Scholar
  19. Selvan ST, Tan TT, Ying JY (2005) Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater 17:1620–1625. doi:10.1002/adma.200401960 CrossRefGoogle Scholar
  20. Sheen S (2003) Controlled synthesis of composite nanoparticles of SiO2/TiO2 and other oxides in flames. PhD Dissertation, Seoul National UniversityGoogle Scholar
  21. Stark WJ, Pratsinis SE (2002) Aerosol flame reactors for manufacture of nanoparticles. Powder Technol 126:103–108. doi:10.1016/S0032-5910(02)00077-3 CrossRefGoogle Scholar
  22. Szabó DV, Vollath D (1999) Nonocomposites from coated nanoparticles. Adv Mater 11:1313–1316. doi:10.1002/(SICI)1521-4095(199910)11:15<1313::AID-ADMA1313>3.0.CO;2-2 CrossRefGoogle Scholar
  23. Tago T, Tashiro S, Hashimoto Y, Wakabayashi K, Kishida M (2003) Synthesis and optical properties of SiO2-coated CeO2 nanoparticles. J Nanopart Res 5:55–60. doi:10.1023/A:1024499516543 CrossRefGoogle Scholar
  24. Teleki A, Pratsinis SE, Wegner K, Jossen R, Krumeich F (2005) Flame-coating of titania particles with silica. J Mater Res 20:1336–1337. doi:10.1557/JMR.2005.0160 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sowon Sheen
    • 1
    • 3
  • Sangsun Yang
    • 1
    • 2
  • Kimin Jun
    • 1
  • Mansoo Choi
    • 1
  1. 1.National CRI Center for Nano Particle Control, Institute of Advanced Machinery and Design, School of Mechanical and Aerospace EngineeringSeoul National UniversitySeoulKorea
  2. 2.Nano Functional Materials Group, Department of Powder MaterialsKorea Institute of Materials ScienceChangwonKorea
  3. 3.Samsung ElectronicsSuwonKorea

Personalised recommendations