Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 169–176 | Cite as

Blue electroluminescence nanodevice prototype based on vertical ZnO nanowire/polymer film on silicon substrate

  • Ying He
  • Jun-An Wang
  • Xiao-Ban Chen
  • Wen-Fei Zhang
  • Xu-Yu Zeng
  • Qiu-Wen Gu
Research Paper


We present a polymer-complexing soft template technique to construct the ZnO-nanowire/polymer light emitting device prototype that exhibits blue electrically driven emission with a relatively low-threshold voltage at room temperature in ambient atmosphere, and the ZnO-nanowire-based LED’s emission wavelength is easily tuned by controlling the applied-excitation voltage. The nearly vertically aligned ZnO-nanowires with polymer film were used as emissive layers in the devices. The method uses polymer as binder in the LED device and dispersion medium in the luminescence layer, which stabilizes the quasi-arrays of ZnO nanowires embedding in a thin polymer film on silicon substrate and passivates the surface of ZnO nanocrystals, to prevent the quenching of luminescence. Additionally, the measurements of electrical properties showed that ZnO-nanowire/polymer film could significantly improve the conductivity of the film, which could be attributed to an increase in both Hall mobility and carrier concentration. The results indicated that the novel technique is a low-cost process for ZnO-based UV or blue light emission and reduces the requirement for achieving robust p-doping of ZnO film. It suggests that such ZnO-nanowire/polymer-based LEDs will be suitable for the electro-optical application.


Electroluminescence ZnO nanowires Nanodevice Polymer-assisted self-assembling 


  1. Bao JM, Zimmler MA, Capasso F, Wang X, Ren ZF (2006) Broadband ZnO single-nanowire light-emitting diode. Nano Lett 6(8):1719–1722. doi:10.1021/nl061080t CrossRefPubMedADSGoogle Scholar
  2. Braun D, Heeger AJ (1992) Electroluminescence from light-emitting diodes fabricated from conducting polymers. Thin Solid Films 216(1):96–98. doi:10.1016/0040-6090(92)90876-D CrossRefADSGoogle Scholar
  3. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541. doi:10.1038/347539a0 CrossRefADSGoogle Scholar
  4. Chang CY, Tsao FC, Pan CJ, Chi GC, Wang HT, Chen JJ, Ren F, Norton DP, Pearton SJ, Chen KH, Chen LC (2006) Electroluminescence from ZnO nanowire/polymer composite p-n junction. Appl Phys Lett 88 (17): 173503Google Scholar
  5. Dai ZR, Pan ZW, Wang ZL (2003) Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13(1):9–24. doi:10.1002/adfm.200390013 CrossRefGoogle Scholar
  6. Dev A, Panda SK, Kar S, Chakrabarti S, Chaudhuri S (2006) Surfactant-assisted route to synthesize well-aligned ZnO nanorod arrays on sol-gel-derived ZnO thin films. J Phys Chem B 110(29):14266–14272. doi:10.1021/jp062729l CrossRefPubMedGoogle Scholar
  7. Duan XF, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421(6920):241–245. doi:10.1038/nature01353 CrossRefPubMedADSGoogle Scholar
  8. Govender K, Boyle DS, O’Brien P, Binks D, West D, Coleman D (2002) Room-temperature lasing observed from ZnO nanocolumns grown by aqueous solution deposition. Adv Mater 14(17):1221–1224. doi:10.1002/1521-4095(20020903)14:17<1221::AID-ADMA1221>3.0.CO;2-1 CrossRefGoogle Scholar
  9. Guo XL, Choi JH, Tabata H, Kawai T (2001) Fabrication and optoelectronic properties of a transparent ZnO homostructural light-emitting diode. Jpn J Appl Phys Part 2 40 (3A): 177–180Google Scholar
  10. Ham H, Shen GZ, Cho JH, Lee TJ, Seo SH, Lee CJ (2005) Vertically aligned ZnO nanowires produced by a catalyst-free thermal evaporation method and their field emission properties. Chem Phys Lett 404(1–3):69–73. doi:10.1016/j.cplett.2005.01.084 CrossRefADSGoogle Scholar
  11. He Y, Sang WB, Wang JA, Wu R, Min J (2005a) Polymer-assisted complexing controlled orientation growth of ZnO nanorods. J Nanopart Res 7(2–3):307–311. doi:10.1007/s11051-005-1169-1 CrossRefGoogle Scholar
  12. He Y, Sang WB, Wang JA, Wu R, Min J (2005b) Vertically well-aligned ZnO nanowires generated with self-assembling polymers. Mater Chem Phys 94(1):29–33. doi:10.1016/j.matchemphys.2005.03.063 CrossRefGoogle Scholar
  13. Hsu NE, Hung WK, Chen YF (2004) Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. J Appl Phys 96(8):4671–4673. doi:10.1063/1.1787905 CrossRefADSGoogle Scholar
  14. Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292(5523):1897–1899. doi:10.1126/science.1060367 CrossRefPubMedADSGoogle Scholar
  15. Kar S, Pal BN, Chaudhuri S, Chakravorty D (2006) One-dimensional ZnO nanostructure arrays: Synthesis and characterization. J Phys Chem B 110(10):4605–4611. doi:10.1021/jp056673r CrossRefPubMedGoogle Scholar
  16. Kim H, Cepler A, Osofsky MS, Auyeung RCY, Piqué A (2007) Fabrication of Zr-N codoped p-type ZnO thin films by pulsed laser deposition. Appl Phys Lett 90 (20): 203508–1–3Google Scholar
  17. Klingshirn C (2007) ZnO: Material, physics and applications. ChemPhysChem 8(6):782–803. doi:10.1002/cphc.200700002 CrossRefPubMedGoogle Scholar
  18. Könenkamp R, Word RC, Schlegel C (2004) Vertical nanowire light-emitting diode. Appl Phys Lett 85(24):6004–6006. doi:10.1063/1.1836873 CrossRefADSGoogle Scholar
  19. Lim JH, Kang CK, Kim KK, Park IK, Hwang DK, Park SJ (2006) UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv Mater 18(20):2720–2724. doi:10.1002/adma.200502633 CrossRefGoogle Scholar
  20. Lyu SC, Zhang Y, Ruh H, Lee HJ, Shim HW, Suh EK, Lee CJ (2002) Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem Phys Lett 363(1–2):134–138. doi:10.1016/S0009-2614(02)01145-4 CrossRefADSGoogle Scholar
  21. Ohta H, Mizoguchi H, Hirano M, Narushima S, Kamiya T, Hosono H (2003) Fabrication and characterization of heteroepitaxial p-n junction diode composed of wide-gap oxide semiconductors p-ZnRh2O4/n-ZnO. Appl Phys Lett 82(5):823–825. doi:10.1063/1.1544436 CrossRefADSGoogle Scholar
  22. Park WI, Yi GC, Kim M, Pennycook SJ (2003) Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv Mater 15(6):526–529. doi:10.1002/adma.200390122 CrossRefGoogle Scholar
  23. Ryu YR, Lee TS, Leem JH, White HW (2003) Fabrication of homostructural ZnO p-n junctions and ohmic contacts to arsenic-doped p-type ZnO. Appl Phys Lett 83(19):4032–4034. doi:10.1063/1.1625787 CrossRefADSGoogle Scholar
  24. Sun MH, Zhang QF, Wu JL (2007) Electrical and electroluminescence properties of As-doped p-type ZnO nanorod arrays. J Phys D Appl Phys 40(12):3798–3802. doi:10.1088/0022-3727/40/12/036 CrossRefADSGoogle Scholar
  25. Tang ZK, Kawasaki M, Ohtomo A, Koinuma H, Segawa Y (2006) Self-assembled ZnO nano-crystals and exciton lasing at room temperature. J Cryst Growth 287(1):169–179. doi:10.1016/j.jcrysgro.2005.10.062 CrossRefADSGoogle Scholar
  26. Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu SF, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M (2005) Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater 4(1):42–45. doi:10.1038/nmat1284 CrossRefPubMedADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ying He
    • 1
  • Jun-An Wang
    • 2
  • Xiao-Ban Chen
    • 1
  • Wen-Fei Zhang
    • 1
  • Xu-Yu Zeng
    • 1
  • Qiu-Wen Gu
    • 1
  1. 1.Department of Polymer Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Materials, School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China

Personalised recommendations