Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 143–150 | Cite as

Porous ZnO nanobelts: synthesis, mechanism, and morphological evolutions

Research Paper

Abstract

Porous ZnO nanobelts with rough surface and poly-crystalline nature have been developed from a facile wet chemical method. The as-prepared products were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), cold field emission scanning electron microscopy (CFE-SEM), and energy dispersive analysis of X-rays (EDAX). The ZnO nanobelts were synthesized with usually 5 to 6 nm in thickness, 10 to 40 nm in width, and about several micrometers in length. A PVP promoted self-assembly mechanism is believed to be responsible for the morphology shaping process of the ZnO nanostructures. This first wet chemical synthesis of such hierarchical structures without any hard templates implies a simple and inexpensive way to prepare transition metal superstructures on a large scale for modern chemical synthesis. Optical characterization by a confocal laser Raman were also carried out to explore their optical properties; the PL and Raman results showed both good agreement with the characters of our samples and potential for future applications such as sensors and other modern technologies.

Keywords

ZnO Nanowire Porous PVP Soft template PL Nanostructure 

References

  1. Cao X, Ning W, Li LD, Guo L (2008) Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sens Actuators B Chem 129:268–273. doi:10.1016/j.snb.2007.08.003 CrossRefGoogle Scholar
  2. Chang Y, Teo JJ, Zeng HC (2005) Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres. Langmuir 21:1074–1079. doi:10.1021/la047671l CrossRefPubMedGoogle Scholar
  3. Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T (2004) Synthesis and Characterization of Chiral Mesoporous Silica. Nature 429:281–284. doi:10.1038/nature02529 CrossRefPubMedADSGoogle Scholar
  4. Chen CC, Chao CY, Lang ZH (2000) Simple Solution-Phase Synthesis of Soluble CdS and CdSe Nanorods. Chem Mater 12:1516–1518. doi:10.1021/cm9907920 CrossRefGoogle Scholar
  5. Chen DH, Hsieh CH (2002) Synthesis of Nickel Nanoparticles in Aqueous Cationic Surfactant Solutions. J Mater Chem 12:2412–2415. doi:10.1039/b200603k CrossRefGoogle Scholar
  6. Chen HM, Liu RS, Li HL, Zeng HC (2006) Generating Isotropic Superparamagnetic Interconnectivity for the Two-Dimensional Organization of Nanostructured Building Blocks. Angew Chem Int Ed 45:2713–2717. doi:10.1002/anie.200503632 CrossRefGoogle Scholar
  7. Cölfen H, Mann S (2003) Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angew Chem Int Ed 42:2350–2365. doi:10.1002/anie.200200562 CrossRefGoogle Scholar
  8. Duff DG, Baiker A, Edwards PP (1993) A New Hydrosol of Gold Clusters. 1. Formation and Particle Size Variation. Langmuir 9:2301–2309. doi:10.1021/la00033a010 CrossRefGoogle Scholar
  9. Greene LE, Yuhas BD, Law M, Zitoun D, Yang PD (2006) Solution-Grown Zinc Oxide Nanowires. Inorg Chem 45:7535–7543. doi:10.1021/ic0601900 CrossRefPubMedGoogle Scholar
  10. Han YJ, Kim JM, Stucky GD (2000) Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chem Mater 12:2068–2069. doi:10.1021/cm0010553 CrossRefGoogle Scholar
  11. Hao YF, Meng GW, Wang ZL, Ye CH, Zhang LD (2006) Periodically Twinned Nanowires and Polytypic Nanobelts of ZnS: The Role of Mass Diffusion in Vapor-Liquid-Solid Growth. Nano Lett 8:1650–1655. doi:10.1021/nl060695n CrossRefADSGoogle Scholar
  12. He T, Chen DR, Jiao XL, Wang YL (2006) Co3O4 Nanoboxes: Surfactant-Templated Fabrication and Microstructure Characterization. Adv Mater 18:1078–1082. doi:10.1002/adma.200501864 CrossRefGoogle Scholar
  13. Hu JQ, Li Q, Wong NB, Lee CS, Lee ST (2002) Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers. Chem Mater 14:1216–1219. doi:10.1021/cm0107326 CrossRefGoogle Scholar
  14. Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001a) Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292:1897–1899. doi:10.1126/science.1060367 CrossRefPubMedADSGoogle Scholar
  15. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001b) Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport. Adv Mater 13:113–116. doi:10.1002/1521-4095(200101)13:2<113:AID-ADMA113 > 3.0.CO;2-HCrossRefGoogle Scholar
  16. Hunt WD (2001) Isomorphic surface acoustic waves on multilayer structures. J Appl Phys 89:3245. doi:10.1063/1.1345853 CrossRefADSGoogle Scholar
  17. Kim Y, Hunt WD, Hickernell FS, Higgins RJ (1994) Reflection Properties of Metallic Gratings on ZnO Films Over GaAs Substrates. J Appl Phys 75:7299. doi:1051-0117/94/0000-040 CrossRefADSGoogle Scholar
  18. Lao JY, Wen JG, Ren ZF (2002) Hierarchical ZnO Nanostructures. Nano Lett 2:1287–1291. doi:10.1021/nl025753t CrossRefADSGoogle Scholar
  19. Lu CL, Cui ZC, Li Z, Yang B, Shen JC (2003) High Refractive Index Thin Films of ZnS/Polythiourethane Nanocomposites. Journal of Materials Chemistry 13:526–530. doi:10.1039/b208850a CrossRefGoogle Scholar
  20. Mao C, Solis DJ, Reiss BD, Kottmann ST, Sweeney RY, Hayhurst A, Georgiou G, Iverson B, Belcher AM (2004) Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires. Science 303:213–217. doi:10.1126/science.1092740 CrossRefPubMedADSGoogle Scholar
  21. Mohamed MB, Ismail KZ, Link S, El-Sayed MA (1998) Thermal Reshaping of Gold Nanorods in Micelles. J Phys Chem 47:9370–9374. doi:10.1021/jp9831482 Google Scholar
  22. Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of Semiconducting Oxides. Science 291:1947–1949. doi:10.1126/science.1058120 CrossRefPubMedADSGoogle Scholar
  23. Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Recent Progress in Processing and Properties of ZnO. Prog Mater Sci 5:293–340. doi:10.1016/j.pmatsci.2004.04.001 CrossRefGoogle Scholar
  24. Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal Nanocrystal Shape and Size Control: The Case of Cobalt. Science 291:2115–2117. doi:10.1126/science.1057553 CrossRefPubMedADSGoogle Scholar
  25. Roy S, Basu S (2002) Improved Zinc Oxide Film for Gas Sensor Applications. Bull Mater Sci 25:513–515. doi:10.1007/BF02710540 CrossRefGoogle Scholar
  26. Schaaff TG, Whetten RL (2000) Giant Gold-Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions. J Phys Chem B 104:2630–2641. doi:10.1021/jp993691y CrossRefGoogle Scholar
  27. Song RQ, Xu AW, Deng B, Li Q, Chen GY (2007) From Layered Basic Zinc Acetate Nanobelts to Hierarchical Zinc Oxide Nanostructures and Porous Zinc Oxide Nanobelts. Adv Funct Mater 17:296–306. doi:10.1002/adfm.200600024 CrossRefGoogle Scholar
  28. Tsai MC, Yeh TK, Tsai CH (2006) An Improved Electrodeposition Technique for Preparing Platinum and Platinum-ruthenium Nanoparticles on Carbon Nanotubes Directly Grown on Carbon Cloth for Methanol Oxidation. Electrochem Commun 8:1445–1452. doi:10.1016/j.elecom.2006.07.003 CrossRefGoogle Scholar
  29. Vayssieres L, Keis K, Hagfeldt A, Lindquist SE (2001) Three-Dimensional Array of Highly Oriented Crystalline ZnO Microtubes. Chem Mater 13:4395–4398. doi:10.1021/cm011160s CrossRefGoogle Scholar
  30. Wang N, Guo L, He L, Cao X, Chen CP, Wang RM, Yang SH (2007) Facile Synthesis of Monodisperse Mn3O4 Tetragonal Nanoparticles and Their Large-scale Assembly into Highly Regular Walls by A Simple Solution Route. Small 3:606–610. doi:10.1002/smll.200600283 CrossRefPubMedGoogle Scholar
  31. Wang XD, Summers CJ, Wang ZL (2004) Mesoporous Single-Crystal ZnO Nanowires Epitaxially Sheathed with Zn2SiO4. Adv Mater 16:1215–1218. doi:10.1002/adma.200306505 CrossRefGoogle Scholar
  32. Wang YD, Zang KY, Chua SJ, Sander MS, Tripathy S, Fonstad CG (2006) High-Density Arrays of InGaN Nanorings, Nanodots, and Nanoarrows Fabricated by a Template-Assisted Approach. J Phys Chem 23:11081–11087. doi:10.1021/jp060419x Google Scholar
  33. Wong EM, Searson PC (1999) ZnO Quantum Particle Thin Films Fabricated by Electrophoretic Deposition. Appl Phys Lett 74:2939–2941. doi:10.1063/1.123972 CrossRefADSGoogle Scholar
  34. Wu JJ, Liu SC (2002) Catalyst-Free Growth and Characterization of ZnO Nanorods. J Phys Chem B 106:9546–9551. doi:10.1021/jp025969j CrossRefGoogle Scholar
  35. Yang PD, Yan HQ, Mao S, Russo R, Johnson J, Saykally R, Morris N, Pham J, He RR, Choi HJ (2002) Controlled Growth of ZnO Nanowires and Their Optical Properties. Adv Funct Mater 12:323–331. doi:10.1002/1616-3028(20020517)12:5<323::AID-ADFM323>3.0.CO;2-GCrossRefGoogle Scholar
  36. Yao KX, Zeng HC (2007) ZnO/PVP Nanocomposite Spheres with Two Hemispheres. J Phys Chem C 111:13301–13308. doi:10.1021/jp072550q CrossRefGoogle Scholar
  37. Yin AJ, Li J, Jian W, Bennett AJ, Xu JM (2001) Fabrication of Highly Ordered Metallic Nanowire Arrays by Electrodeposition. Appl Phys Lett 79:1039–1041. doi:10.1063/1.1389765 CrossRefADSGoogle Scholar
  38. Wang Y-C, Leu I-C, Hon M-H (2002) Preparation of Nanosized ZnO Arrays by Electrophoretic Deposition. Electrochem Solid-State Lett 5:C53–C55. doi:10.1149/1.1454547 CrossRefGoogle Scholar
  39. Zhang J, Yu WY, Zhang LD (2002) Fabrication of Semiconducting ZnO Nanobelts Using a Halide Source and Their Photoluminescence Properties. Phys Lett A 299:276–281. doi:10.1016/S0375-9601(01)00264-X CrossRefADSGoogle Scholar
  40. Zhao QX, Willander M, Morjan RE, Hu QH, Campbell EEB (2003) Optical Recombination of ZnO Nanowires Grown on Sapphire and Si Substrates. Appl Phys Lett 83:165–167. doi:10.1063/1.1591069 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangsu University of Science and TechnologyJiangsuChina
  2. 2.School of Chemistry and Environmental EngineeringBeijing University of Aeronautics and AstronauticsBeijingChina
  3. 3.Zhongshan Torch polytechnicZhongshan, GuangdongChina

Personalised recommendations