Journal of Nanoparticle Research

, Volume 11, Issue 8, pp 2145–2152 | Cite as

Nanoscale yttrium distribution in yttrium-doped ceria powder

  • Shao-Ju Shih
  • Lan-Yun Shery Chang
  • Chin-Yi Chen
  • Konstantin B. Borisenko
  • David J. H. Cockayne
Research Paper

Abstract

The microstructure and geometry of yttrium-doped ceria particles, synthesized by spray pyrolysis (SP), were characterized by transmission electron microscopy, and the distribution of yttrium was investigated by energy-dispersive X-ray spectroscopy (EDX). The yttrium distribution was investigated by considering an electron interaction volume and geometry of the particle in an EDX profile analysis. Two models, linear and non-linear, for the yttrium concentration gradient were tested against the experimental EDX data for hollow particles. The results showed that the linear concentration distribution of yttrium fits the EDX profiles appreciably better than the non-linear concentration gradient model. This suggests that yttrium distribution is mainly controlled by the different diffusion rates of the precursors from the centre to the surface of the particle, which could be related to their different solubilities, during the heating process in SP.

Keywords

Solid oxide fuel cells Spray pyrolysis TEM EDX Yttrium-doped ceria Synthesis Nanopowder 

References

  1. Balazs GB, Glass RS (1995) Ac-impedance studies of rare-earth-oxide doped ceria. Solid State Ion 76:155–162. doi:10.1016/0167-2738(94)00242-K CrossRefGoogle Scholar
  2. Bernasik A, Kowalski K, Sadowski A (2002) Surface segregation in yttria-stabilized zirconia by means of angle resolved X-ray photoelectron spectroscopy. J Phys Chem Solids 63:233–239. doi:10.1016/S0022-3697(01)00135-4 CrossRefADSGoogle Scholar
  3. Boutz MMR, Winnubst AJA, Burggraaf AJ (1994) Yttria-ceria stabilized tetragonal zirconia polycrystals—sintering, grain-growth and grain-boundary segregation. J Eur Ceram Soc 13:89–102. doi:10.1016/0955-2219(94)90106-6 CrossRefGoogle Scholar
  4. Castillo IA, Munz RJ (2005) Inductively coupled plasma synthesis of CeO2-based powders from liquid solutions for SOFC electrolytes. Plasma Chem Plasma Process 25:87–107. doi:10.1007/s11090-004-8836-3 CrossRefGoogle Scholar
  5. Ii S, Yoshida H, Matsui K, Ohmichi N, Ikuhara Y (2006) Microstructure and surface segregation of 3 mol% Y2O3-doped ZrO2 particles. J Am Ceram Soc 89:2952–2955Google Scholar
  6. Inaba H, Tagawa H (1996) Ceria-based solid electrolytes—review. Solid State Ion 83:1–16. doi:10.1016/0167-2738(95)00229-4 CrossRefGoogle Scholar
  7. Kilbourn BT (1993) Part 1, A–L. A lanthanide lantology. Molycorp Inc., Mountain Pass, p 4Google Scholar
  8. Longo V, Podda L (1981) Phase-equilibrium diagram of the system ceria-yttria for temperatures between 900 and 1700 °C. J Mater Sci 16:839–841. doi:10.1007/BF02402807 CrossRefADSGoogle Scholar
  9. Maric R, Seward S, Faguy PW, Oljaca M (2003) Electrolyte materials for intermediate temperature fuel cells produced via combustion chemical vapor condensation. Electrochem Solid ST 6:A91–A95. doi:10.1149/1.1562071 CrossRefGoogle Scholar
  10. Minh NQ (1993) Ceramic fuel-cells. J Am Ceram Soc 76:563–588. doi:10.1111/j.1151-2916.1993.tb03645.x CrossRefGoogle Scholar
  11. Mori T, Drennan J, Lee JH, Li JG, Ikegami T (2002) Improving the ionic conductivity of yttria-stabilised zirconia electrolyte materials. Solid State Ion 154:529–533. doi:10.1016/S0167-2738(02)00508-8 CrossRefGoogle Scholar
  12. Mori T, Drennan J, Wang Y, Auchterlonie G, Li J-G, Yago A (2003) Influence of nano-structural feature on electrolytic properties in Y2O3 doped CeO2 system. Sci Technol Adv Mater 4:213–220. doi:10.1016/S1468-6996(03)00047-0 CrossRefGoogle Scholar
  13. Ou DR, Mori T, Ye F, Kobayashi T, Zou J, Auchterlonie G et al. (2006) Oxygen vacancy ordering in heavily rare-earth-doped ceria. Appl Phys Lett 89:171911. doi:10.1063/1.2369881 CrossRefADSGoogle Scholar
  14. Ou DR, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J (2007) Evidence of intragranular segregation of dopant cations in heavily yttrium-doped ceria. Electrochem Solid ST 10:P1–P3. doi:10.1149/1.2372224 CrossRefGoogle Scholar
  15. Seo DJ, Ryu KO, Park SB, Kim KY, Song RH (2006) Synthesis and properties of Ce1−xGdxO2−x/2 solid solution prepared by flame spray pyrolysis. Mater Res Bull 41:359–366. doi:10.1016/j.materresbull.2005.08.012 CrossRefGoogle Scholar
  16. Shih S-J, Huang Y, Lyu Y-R, Chen C-Y (2008) Cross-sectional observation of yttrium and nickel oxide doped ceria powder. J Nanosci Nanotechnol (in press)Google Scholar
  17. Skarman B, Grandjean D, Benfield RE, Hinz A, Andersson A, Wallenberg LR (2002) Carbon monoxide oxidation on nanostructured CuOx/CeO2 composite particles characterized by HREM, XPS, XAS, and high-energy diffraction. J Catal 211:119–133Google Scholar
  18. Song YL, Tsai SC, Chen CY, Tseng TK, Tsai CS, Chen JW et al (2004) Ultrasonic spray pyrolysis for synthesis of spherical zirconia particles. J Am Ceram Soc 87:1864–1871CrossRefGoogle Scholar
  19. Suda S, Kawahara K, Kawano M, Yoshida H, Inagaki T (2007) Preparation of matrix-type nickel oxide/samarium-doped ceria composite particles by spray pyrolysis. J Am Ceram Soc 90:1094–1100. doi:10.1111/j.1551-2916.2007.01530.x CrossRefGoogle Scholar
  20. Theunissen G, Winnubst AJA, Burggraaf AJ (1992) Surface and grain-boundary analysis of doped zirconia ceramics studied by AES and XPS. J Mater Sci 27:5057–5066. doi:10.1007/BF01105274 CrossRefADSGoogle Scholar
  21. VanHerle J, Horita T, Kawada T, Sakai N, Yokokawa H, Dokiya M (1996) Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte. Solid State Ion 86–8:1255–1258. doi:10.1016/0167-2738(96)00297-4 CrossRefGoogle Scholar
  22. Wang DY, Park DS, Griffith J, Nowick AS (1981) Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ion 2:95–105. doi:10.1016/0167-2738(81)90005-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Shao-Ju Shih
    • 1
  • Lan-Yun Shery Chang
    • 1
  • Chin-Yi Chen
    • 2
  • Konstantin B. Borisenko
    • 1
  • David J. H. Cockayne
    • 1
  1. 1.Department of MaterialsUniversity of OxfordOxfordUK
  2. 2.Department of Materials Science and EngineeringFeng Chia UniversityTaichungTaiwan, ROC

Personalised recommendations