Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 111–120 | Cite as

Layered double hydroxide nanoparticles incorporating terbium: applicability as a fluorescent probe and morphology modifier

  • Anthony W. Musumeci
  • Zhi Ping Xu
  • Suzanne V. Smith
  • Rodney F. Minchin
  • Darren J. Martin
Research Paper


Stable and non-invasive fluorescent probes for nanotoxicological investigations are greatly needed to track the fate of nanoparticles in biological systems. The potential for terbium (Tb) to act as a fluorescent probe and its effect on layered double hydroxide (LDH) nanoparticle morphology are presented in this study. Incorporation of Tb during synthesis offers a simple methodology to easily tailor LDH nanoparticle thickness. A three-fold reduction in the average crystallite thickness (from 13 to 4 nm) has been achieved, whilst preferential lateral growth of LDH nanoparticles in the a-b crystal plane has been observed with increasing Tb loadings. Remarkably, Tb–LDH nanoparticles have emitted green fluorescence with a fluorescence quantum yield of 0.044.


Layered double hydroxide Fluorescent nanoparticles Morphology modification Visualization Instrumentation 


  1. Adachi-Pagano M, Forano C, Besse J-P (2000) Delamination of layered double hydroxides by use of surfactants. Chem Commun (Camb) (1):91–92. doi:10.1039/a908251d
  2. Baraton MI, Chen X, Gonsalves KE (1997) FTIR study of a nanostructured aluminium nitride powder surface: determination of the acidic/basic sites by CO, CO2 and acetic acid absorptions. Nanostruct Mater 8(4):435–445. doi:10.1016/S0965-9773(97)00189-X CrossRefGoogle Scholar
  3. Braterman PS, Xu ZP, Yarberry F (2004) Layered double hydroxides (LDHs). In: Auerback SM, Carrado KA, Dutta PK (eds) Handbook of layered materials. Marcell Dekker, New York, pp 373–474Google Scholar
  4. Calvin S, Miller MM, Goswami R, Cheng SF, Mulvaney SP, Whitman LJ, Harris VG (2003) Determination of crystallite size in a magnetic nanocomposite using extended X-ray absorption fine structure. J Appl Phys 94(1):778–783. doi:10.1063/1.1581344 CrossRefADSGoogle Scholar
  5. Cavani F, Trifiro F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11(2):173–301. doi:10.1016/0920-5861(91)80068-K CrossRefGoogle Scholar
  6. Chang Z, Evans D, Duan X, Boutinaud P, de Roy M, Forano C (2006) Preparation and characterization of rare earth-containing layered double hydroxide. J Phys Chem Solids 67:1054–1057. doi:10.1016/j.jpcs.2006.01.025 CrossRefADSGoogle Scholar
  7. Choy J-H, Kwak S-Y, Jeong Y-J, Park J-S (2000) Inorganic layered double hydroxides as nonviral vectors. Angew Chem Int Ed 39(22):4042–4045. doi:10.1002/1521-3773(20001117)39:22<4041::AID-ANIE4041>3.0.CO;2-CCrossRefGoogle Scholar
  8. Greenwell HC, Bindley LA, Unwin PR, Holliman PJ, Jones W, Coveney PV, Barnes SL (2006) In situ monitoring of crystal growth and dissolution of oriented layered double-hydroxide crystals immobilized on silicon. J Cryst Growth 294(1):53–59. doi:10.1016/j.jcrysgro.2006.05.048 CrossRefADSGoogle Scholar
  9. Hernandez-Moreno MJ, Uilbarri MA, Rendon JL, Serna CJ (1985) IR characteristics of hydrotalcite-like compounds. Phys Chem Miner 12:34–38ADSGoogle Scholar
  10. Hibino T, Jones W (2001) New approach to the delamination of layered double hydroxides. J Mater Chem 11(5):1321–1323. doi:10.1039/b101135i CrossRefGoogle Scholar
  11. Iannou PC, Rusakova NV, Andrikopoulou DA, Glynou KM, Tzompanaki GM (1998) Spectrofluorimetric determination of anthranilic acid derivatives based on terbium sensitized fluorescence. Analyst (Lond) 123:2839–2843. doi:10.1039/a806093b CrossRefADSGoogle Scholar
  12. Kannan S (2004) Influence of synthesis methodology and post treatments on structural and textural variations in MgAlCO3 hydrotalcite. J Mater Sci 39(21):6591–6596. doi:10.1023/B:JMSC.0000044900.22280.93 CrossRefADSGoogle Scholar
  13. Kovanda F, Kolousek D, Cilova Z, Hulinsky V (2005) Crystallization of synthetic hydrotalcite under hydrothermal conditions. Appl Clay Sci 28(1–4):101–109. doi:10.1016/j.clay.2004.01.009 CrossRefGoogle Scholar
  14. Li B, He J, Evans DG, Duan X (2006a) Morphology and size control of Ni-Al layered double hydroxides using chitosan as template. J Phys Chem Solids 67(5–6):1067–1070. doi:10.1016/j.jpcs.2006.01.027 CrossRefADSGoogle Scholar
  15. Li L, Ma R, Iyi N, Ebina Y, Takada K, Sasaki T (2006b) Hollow nanoshell of layered double hydroxide. Chem Commun (Camb) (29):3125–3127. doi:10.1039/b605889b
  16. Martini JL, Tetreau C, Pochon F, Tourbez H, Lentz JM, Lavalette D (1993) On the mechanism of energy transfer to Tb3+ ions in proteins. A time-resolved luminescence study of the Tb-elastase complex. Eur J Biochem 211(3):467–473. doi:10.1111/j.1432-1033.1993.tb17572.x CrossRefPubMedGoogle Scholar
  17. Mohmel S, Kurzawski I, Uecker D, Muller D, Gessner W (2002) The influence of a hydrothermal treatment using microwave heating on the crystallinity of layered double hydroxides. Cryst Res Technol 37(4):359–369. doi:10.1002/1521-4079(200204)37:4<359::AID-CRAT359>3.0.CO;2-ICrossRefGoogle Scholar
  18. Nijs H, Clearfield A, Vansant EF (1998) The intercalation of phenylphosphonic acid in layered double hydroxides. Microporous Mesoporous Mater 23(1–2):97–108. doi:10.1016/S1387-1811(98)00056-0 CrossRefGoogle Scholar
  19. Oh J-M, Hwang S-H, Choy J-H (2002) The effect of synthetic conditions on tailoring the size of hydrotalcite particles. Solid State Ion 151(1–4):285–291. doi:10.1016/S0167-2738(02)00725-7 CrossRefGoogle Scholar
  20. Oh J-M, Park M, Kim S-T, Jung J-Y, Kang Y-G, Choy J-H (2006) Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system. J Phys Chem Solids 67(5–6):1024–1027. doi:10.1016/j.jpcs.2006.01.033 CrossRefADSGoogle Scholar
  21. Stumpf T, Curtius H, Walther C, Dardenne K, Ufer K, Fanghael T (2007) Incorporation of Eu(III) into hydrotalcite: a TRLFS and EXAFS study. Environ Sci Technol 41:3186–3191. doi:10.1021/es0624873 CrossRefPubMedGoogle Scholar
  22. Thomas GS, Kamath PV (2006) Line broadening in the PXRD patterns of layered hydroxides: the relative effects of crystallite size and structural disorder. J Chem Sci 118(1):127–133. doi:10.1007/BF02708774 CrossRefGoogle Scholar
  23. Trifiro F, Vaccari A (1996) Comprehensive supramolecular chemistry, solid state supramolecular chemistry: two and three-dimensional inorganic networks. Pergamon Press, OxfordGoogle Scholar
  24. Wu Q, Sjastad AO, Vistad OB, Knudsen KD, Roots J, Pedersen JS, Norby P (2007) Characterization of exfoliated (LDH, Mg/Al = 3) nanosheets at high concentrations in formamide. J Mater Chem 17(10):965–971. doi:10.1039/b612389a CrossRefGoogle Scholar
  25. Xu ZP, Zeng HC (2001) Abrupt structural transformation in hydrotalcite-like compounds Mg1-xAlx(OH)2(NO3)x · nH2O as a continuous function of nitrate anions. J Phys Chem B 105:1743–1749. doi:10.1021/jp0029257 CrossRefGoogle Scholar
  26. Xu ZP, Lu GQ (Max) (2005) (WO/2006/066341) Preparation of Suspensions PCT Patent WO 20006066341 Patent Number: 2004908326, 29 June 2006Google Scholar
  27. Xu ZP, Stevenson G, Lu C-Q, Lu GQ (2006a) Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions. J Phys Chem B 110(34):16923–16929. doi:10.1021/jp062281o CrossRefPubMedGoogle Scholar
  28. Xu ZP, Stevenson GS, Lu C-Q, Lu GQ, Bartlett PF, Gray PP (2006b) Stable suspension of layered double hydroxide nanoparticles in aqueous solution. J Am Chem Soc 128(1):36–37. doi:10.1021/ja056652a CrossRefPubMedGoogle Scholar
  29. Xu ZP, Kurniawan ND, Bartlett PF, Lu GQ (2007) Enhancement of relaxivity rates of Gd-DTPA complexes by intercalation into layered double hydroxide nanoparticles. Chem Eur J 13:2824–2830. doi:10.1002/chem.200600571 CrossRefGoogle Scholar
  30. Zhuravela NG, Eliseev AA, Lukashin AV, Kynast U, Tret’yakov AYD (2004) Luminescent materials based on Tb- and Eu-containing layered double hydroxides. Dokl Chem 396(1):87–91. doi:10.1023/B:DOCH.0000029538.18156.62 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Anthony W. Musumeci
    • 1
  • Zhi Ping Xu
    • 1
  • Suzanne V. Smith
    • 2
  • Rodney F. Minchin
    • 3
  • Darren J. Martin
    • 1
  1. 1.ARC Centre of Excellence for Functional Nanomaterials, Australian Institute for Nanotechnology and BioengineeringThe University of QueenslandBrisbaneAustralia
  2. 2.ARC Centre of Excellence for Antimatter-Matter StudiesAustralian Nuclear Science and Technology OrganisationMenaiAustralia
  3. 3.School of Biomedical and Medical ScienceThe University of QueenslandBrisbaneAustralia

Personalised recommendations