Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1247–1250 | Cite as

Hydrothermal synthesis of large maghemite nanoparticles: influence of the pH on the particle size

  • Olivier Horner
  • Sophie Neveu
  • Sophie de Montredon
  • Jean-Michel Siaugue
  • Valérie Cabuil
Brief Communication

Abstract

Maghemite nanoparticles with sizes in the range 10–110 nm and good monodispersity have been synthesized by co precipitation at room temperature from Fe2+ and Fe3+ ions by a (N(CH3)4OH) solution, followed by an hydrothermal treatment at 200 °C and an oxidation step with Fe(NO3)3. The influence of the incubation time (at 200 °C) and of the pH of the autoclaved solution on the particles size has been studied. It was found that the pH value allows to tune the size of the maghemite particles.

Keywords

Maghemite nanoparticles Hydrothermal synthesis Autoclave Colloids 

Supplementary material

References

  1. Baldan A (2002) Review progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J Mater Sci 37:2171–2202. doi:10.1023/A:1015388912729 CrossRefGoogle Scholar
  2. Bertorelle F, Wilhelm C, Roger J, Gazeau F, Ménager C, Cabuil V (2006) Fluorescence-modified superparamagnetic nanoparticles: intracellular uptake and use in cellular imaging. Langmuir 22:5385–5391. doi:10.1021/la052710u PubMedCrossRefGoogle Scholar
  3. Cabuil V (1987) Ferrofluides à base de maghemite: synthèse, propriétés physicochimiques et magnéto-optiques. PhD Thesis, University Pierre et Marie Curie, FranceGoogle Scholar
  4. Daou TJ, Pourroy G, Bégin-Colin S, Grenèche JM, Ulhaq-Bouillet C, Legaré P, Bernhardt P, Leuvrey C, Rogez G (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404. doi:10.1021/cm060805r CrossRefGoogle Scholar
  5. Fauconnier F, Bée A, Roger J, Pons JN (1999) Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. J Mol Liq 83:233–242. doi:10.1016/S0167-7322(99)00088-4 CrossRefGoogle Scholar
  6. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012 PubMedCrossRefGoogle Scholar
  7. Hyeon T, Lee SS, Park J, Chung Y, Na HB (2001) Synthesis of highly crystalline maghemite nanocrystallites without a size-selection process. J Am Chem Soc 123:12798–12801. doi:10.1021/ja016812s PubMedCrossRefGoogle Scholar
  8. Jeong U, Teng X, Wang Y, Yang H, Xia Y (2007) Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater 19:33–60; and references therein. doi:10.1002/adma.200600674 CrossRefGoogle Scholar
  9. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248. doi:10.1109/TMAG.1981.1061188 CrossRefADSGoogle Scholar
  10. Mornet S, Vasseur S, Grasset F, Duguet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mater Chem 14:2161–2175. doi:10.1039/b402025a CrossRefGoogle Scholar
  11. Perrin-Cocon LA, Marche PN, Villiers CL (1999) Purification of intracellular compartments involved in antigen processing: a new method based on magnetic sorting. Biochem J 338:123–130. doi:10.1042/0264-6021:3380123 PubMedCrossRefGoogle Scholar
  12. Vidal-Vidal J, Rivas J, Lopez-Quintelma MA (2006) Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288:44–51. doi:10.1016/j.colsurfa.2006.04.027 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Olivier Horner
    • 1
  • Sophie Neveu
    • 1
  • Sophie de Montredon
    • 1
  • Jean-Michel Siaugue
    • 1
  • Valérie Cabuil
    • 1
  1. 1.Laboratoire Colloïdes et Interfaces ChargésUMR CNRS, Université Pierre et Marie Curie, ESPCI 7612Paris Cedex 05France

Personalised recommendations