Journal of Nanoparticle Research

, Volume 12, Issue 1, pp 101–109 | Cite as

One-pot synthesis of oleic acid-capped cadmium chalcogenides (CdE: E = Se, Te) nano-crystals

  • P. K. Khanna
  • K. Srinivasa Rao
  • K. R. Patil
  • V. N. Singh
  • B. R. Mehta
Research Paper


Surface-capped CdSe and CdTe nano-crystals (NCs) have been synthesized using cadmium acetate, oleic acid and respective tri-octylphosphine chalcogenide (TOPE; E = Se/Te) in diphenyl ether (DPE). Well-dispersed CdSe particles showed two absorption bands at the region of 431–34 and 458–60 nm in optical absorption study. A band-edge emission resulted at 515 nm with an excitation energy of 400 nm, in its photoluminescence (PL) spectrum. Similarly, UV–visible absorption study of CdTe revealed an absorption band at <700 nm. The broadened X-ray diffraction (XRD) pattern showed that at higher reaction temperature cubic CdSe but hexagonal CdTe can be obtained with crystallite size of <10 nm. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that agglomerated particles are of spherical nature. The inter-planar spacing in CdTe was measured to be 0.406 nm, a characteristic of (100) lattice plane in hexagonal CdTe. X-ray photoelectron spectroscopy (XPS) showed that CdSe NCs have better air stability stable than CdTe. Presence of organic moiety around the semiconductor particles was confirmed by infra-red (IR) spectroscopy.


Semiconductors Surface capping Chemical synthesis Photoluminescence 


  1. Afzaal M, Crouch D, Malik MA, Motevalli M, O’Brien P, Park J-H (2003) Deposition of CdSe thin films using a novel single-source precursor; [MeCd{(SePiPr2)2N}]2. J Mater Chem 13:639–640CrossRefGoogle Scholar
  2. Alivisatos AP (1998) Electrical studies of semiconductor-nanocrystals colloids. MRS Bull February:18–23Google Scholar
  3. Briggs D, Seah MP (1996) Particle surface analysis. In: Auger and X-ray photoelectron spectroscopy, vol 1, 2nd edn. Wiley, ChichesterGoogle Scholar
  4. Chen Y, Gao L (2002) Synthesis and characterization of pyramidal CdSe nanoparticles. Chem Lett 6:556–557. doi:10.1246/cl.2002.556 CrossRefGoogle Scholar
  5. Chu M, Liu G (2006) Synthesis of liposomes-templated CdSe hollow and solid nanospheres. Mater Lett 60:11–14. doi:10.1016/j.matlet.2005.07.086 CrossRefGoogle Scholar
  6. Colvin VL, Schlamp MC, Alivisatos AP (1994) Light emitting diodes made from cadmium selenides nanocrystals and a semiconducting polymer. Nature 370:354–358. doi:10.1038/370354a0 CrossRefADSGoogle Scholar
  7. Deng Z-X, Li L, Li Y (2003) Novel inorganic-organic layered structures: crystallographic understanding of both phase & morphology formations of one-dimensional CdE (E = S, Se, Te) nanorods in ethylenediamine. Inorg Chem 42:2331–2341. doi:10.1021/ic025846d CrossRefPubMedGoogle Scholar
  8. Diao X-L, Xia Y-S, Zhang T-L, Li Y, Zhu C-Q (2007) Fluorescence-detecting cationic surfactants using luminescent CdTe quantum dots as probes. Anal Bioanal Chem 388:1191–1197. doi:10.1007/s00216-007-1319-7 CrossRefPubMedGoogle Scholar
  9. Firth AV, Haggata SW, Khanna PK, Williams SJ, Allen JW, Magennis SW, Samuel IDW, Cole-Hamilton DJ (2004) Production and luminescent properties of CdSe and CdS nanoparticle-polymer composites. J Lumin 109:163–173Google Scholar
  10. Hambrock J, Birkner A, Fischer RA (2001) Synthesis of CdSe nanoparticles using various organometallic cadmium precursors. J Mater Chem 11:3197–3201. doi:10.1039/b104231a CrossRefGoogle Scholar
  11. Han H-y, Sheng Z-h, Liang J-g (2006) A novel method for the preparation of water-soluble and small-size CdSe quantum dots. Mater Lett 60:3782–3785CrossRefGoogle Scholar
  12. Khanna PK (2008) Near band-gap emission from CdSe nano-crystals synthesized from direct reaction of cadmium acetate and octeno-1,2,3-selenadiazole. J Synth React Inorg Met-Org Nano-Met Chem 38(5):409–413MathSciNetGoogle Scholar
  13. Khanna PK, Gorte RM, Gokhale R (2004a) Synthesis of cadmium selenide from hepteno-1,2,3-selenadiazol and cadmium salts in ethylene glycol. Mater Lett 58:966–969. doi:10.1016/j.matlet.2003.07.035 CrossRefGoogle Scholar
  14. Khanna PK, Morley CP, Gorte RM, Gokhale R, Subbarao VVVS, Satyanarayana CVV (2004b) Simple and effective synthesis of cadmium selenide in aqueous N,N′ dimethylformamide. Mater Chem Phys 83:323–327. doi:10.1016/j.matchemphys.2003.10.013 CrossRefGoogle Scholar
  15. Lee HJ, Kim D-Y, Yoo J-S, Bang J, Kim S, Park S-M (2007) Anchoring cadmium chalcogenide quantum dots (QDs) onto stable oxide; semiconductors for QD sensitized solar cells. Bull Korean Chem Soc 28:953–958CrossRefGoogle Scholar
  16. Liu L, Peng Q, Li Y (2008) Preparation of CdSe QDs with full colour emission based on a room temperature injection technique. Inorg Chem 47(11):5022–5028CrossRefPubMedGoogle Scholar
  17. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis & characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715. doi:10.1021/ja00072a025 CrossRefGoogle Scholar
  18. Murray CB, Sun S, Gaschler W, Doyle H, Betley TA, Kagan CR (2001) Colloidal synthesis of nanocrystals and nanocrystals superlattices. IBM J Res Dev 45:47–55CrossRefGoogle Scholar
  19. Nie W, An L, Jiang B, Ji X-L (2004) A facile synthesis of CdSe and CdTe nanorods assisted by myristic acid. Chem Lett 7(33):836–837. doi:10.1246/cl.2004.836 CrossRefGoogle Scholar
  20. Pei J-H, Lin CM, Chuu D-S (1998) Characterization of CdTe film grown on a Si (111) substrate. Chin J Physiol 1(36):44–52Google Scholar
  21. Peng ZA, Peng X (2001) Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123:183–184. doi:10.1021/ja003633m CrossRefPubMedGoogle Scholar
  22. Protasenko V, Bacinello D, Kuno M (2006) Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires. J Phys Chem B 110(50):25322–25331CrossRefPubMedGoogle Scholar
  23. Qu L, Yu WW, Peng X (2004) In situ observation of the nucleation & growth of CdSe nanocrystals. Nano Lett 4:465–469. doi:10.1021/nl035211r CrossRefADSGoogle Scholar
  24. Raevskaya AE, Stroyuk AL, Kuchmiy SYa, Azhniuk YuM, Dzhagan VM, Yukhymchuk VO, Valakh MYa (2006) Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions. Colloids Surf A Physicochem Eng Asp 290:304–309CrossRefGoogle Scholar
  25. Rosenthal SJ, McBride J, Pennycook SJ, Feldman LC (2007) Synthesis, surface studies, composition and structural characterization of CdSe, core/shell and biologically active nanocrystals. Surf Sci Rep 62:111–157. doi:10.1016/j.surfrep.2007.02.001 CrossRefADSGoogle Scholar
  26. Sashchiuk A, Amirav L, Bashouti M, Krueger M, Sivan U, Lifshitz E (2004) PbSe nanocrystals assemblies: synthesis and structural, optical and electrical characterization. Nano Lett 4:159–165. doi:10.1021/nl0345116 CrossRefADSGoogle Scholar
  27. Trindale T, Monteiro OC, O’Brien P, Motevalli M (1999) Synthesis of PbSe nanocrystallites using a single-source method. The X-ray crystal structure of lead(II) diethyldiselenocarbamate. Polyhedron 18:1171–1175. doi:10.1016/S0277-5387(98)00411-2 CrossRefGoogle Scholar
  28. Wang Q, Seo D-K (2006) Synthesis of deep-red-emitting CdSe quantum dots and general non-inverse-square behavior of quantum confinement in CdSe quantum dots. Chem Mater 18:5764–5767CrossRefADSGoogle Scholar
  29. Wu N, Fu L, Su M, Aslam M, Wong KC, Dravid VP (2004) Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett 4:383CrossRefADSGoogle Scholar
  30. Yen BKH, Stott NE, Jensen KF, Bawendi MG (2003) A continuous-flow microcapillary reactor for the preparation of a size series of CdSe nanocrystals. Adv Mater 15:1858–1862. doi:10.1002/adma.200305162 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • P. K. Khanna
    • 1
  • K. Srinivasa Rao
    • 1
  • K. R. Patil
    • 2
  • V. N. Singh
    • 3
  • B. R. Mehta
    • 3
  1. 1.Nanoscience LaboratoryCentre for Materials for Electronics Technology (C-MET)PuneIndia
  2. 2.National Chemical LaboratoryPuneIndia
  3. 3.Thin Film Laboratory, Department of PhysicsIndian Institute of Technology (IIT)DelhiIndia

Personalised recommendations