Ripening of nanowire-supported gold nanoparticles

  • Timothy Turba
  • M. Grant Norton
  • Ishwar Niraula
  • David N. McIlroy
Research Paper

Abstract

Gold nanoparticles have applications ranging from catalysts for low temperature oxidation of CO to solar energy capture in the infrared. For all these applications, particle size and shape are critical. In this study, nanoparticle gold formed on GaN nanowires by plasma-enhanced chemical vapor deposition was annealed at temperatures ranging from 150 to 270 °C for 24 h. Particle size was measured before and after annealing using a field emission scanning electron microscope. Ripening of the gold particles was observed even at the lowest annealing temperatures of the study. The particle growth kinetics showed an Arrhenius relationship with activation energy of 27.38 kJ/mol. This value suggests that ripening occurs by particle migration and coalescence rather than adatom diffusion.

Keywords

Gold nanoparticles Ripening GaN nanowires Particle migration and coalescence Nanomaterials Nanocomposites 

References

  1. Bore MT, Pham HN, Ward TL and Datye AK (2004) Role of pore curvature on the thermal stability of gold nanoparticles in mesoporous silica. Chem Commun (Camb) 2620–2621. doi:10.1039/b407575g
  2. Buffat P, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298. doi:10.1103/PhysRevA.13.2287 CrossRefADSGoogle Scholar
  3. Campbell CT (2004) The active site in nanoparticle gold catalysis. Science 306:234–235. doi:10.1126/science.11042467 CrossRefPubMedGoogle Scholar
  4. Datye AK, Xu Q, Kharas KC, McCarty JM (2006) Particle size distributions in heterogeneous catalysts: what do they tell us about the sintering mechanism? Catal Today 111:59–67. doi:10.1016/j.cattod.2005.10.013 CrossRefGoogle Scholar
  5. Dobrokhotov V, McIlroy DN, Norton MG, Abuzir A, Yeh WJ, Stevenson I, Pouy R, Bochenek J, Cartwright M, Wang L, Dawson J, Beaux M, Berven CA (2006a) Principles and mechanisms of gas sensing by GaN nanowires functionalized with gold nanoparticles. J Appl Phys 99:104302–104307. doi:10.1063/1.2195420 CrossRefADSGoogle Scholar
  6. Dobrokhotov V, McIlroy DN, Norton MG, Berven CA (2006b) Transport properties of hybrid nanopatricle–nanowire systems and their application to gas sensing. Nanotechnology 17:4135–4142. doi:10.1088/0957-4484/17/16/024 CrossRefADSGoogle Scholar
  7. Eilers H, Biswas A, Pounds TD, Norton MG, Elbahri M (2006) Teflon AF/Ag nanocomposites with tailored optical properties. J Mater Res 21:2168–2171. doi:10.1557/JMR.2006.0267 CrossRefADSGoogle Scholar
  8. Foss CA Jr, Hornyak GL, Stockert JA, Martin CR (1994) Template-synthesized nanoscopic gold particles: optical spectra and the effects of particle size and shape. J Phys Chem 98:2963–2971. doi:10.1021/j100062a037 CrossRefGoogle Scholar
  9. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36:153–156. doi:doi:10.1016/S0920-5861(96)00208-8 CrossRefGoogle Scholar
  10. Hummel RE, Geier HJ (1975) Activation energy for electrotransport in thin silver and gold films. Thin Solid Films 25:335–342. doi:10.1016/0040-6090(75)90053-X CrossRefADSGoogle Scholar
  11. Jak MJJ, Konstapel C, van Kreuningen A, Verhoeven J, Frenken JWM (2000) Scanning tunneling microscopy study of the growth of small palladium particles on TiO2(110). Surf Sci 457:295–310. doi:10.1016/S0039-6028(00)00431-3 CrossRefADSGoogle Scholar
  12. LaLonde AD, Norton MG, Zhang D, Gangadean D, Alkhateeb A, Padmanabhan R, McIlroy DN (2005) Controlled growth of gold nanoparticles on silica nanowires. J Mater Res 20:3021–3027. doi:10.1557/JMR.2005.0368 CrossRefADSGoogle Scholar
  13. Landolt-Boernstein (1990) Numerical data and functional relationships in science and technology, diffusion in solid metals and alloys, vol 26. Springer, Berlin, p 640Google Scholar
  14. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077. doi:10.1021/jp990183f CrossRefGoogle Scholar
  15. Malik AQ, Damit S (2003) Outdoor testing of single crystal silicon solar cells. Renew Energy 28:1433–1445. doi:10.1016/S0960-1481(02)00255-0 CrossRefGoogle Scholar
  16. Mitchell CEJ, Howard A, Carney M, Egdell RG (2001) Direct observation of behaviour of Au nanoclusters on TiO2(110) at elevated temperatures. Surf Sci 490:196–210. doi:10.1016/S0039-6028(01)01333-4 CrossRefADSGoogle Scholar
  17. Parker SC, Grant AW, Bondzie VA, Campbell CT (1999) Island growth kinetics during the vapor deposition of gold onto TiO2(110). Surf Sci 441:10–20. doi:10.1016/S0039-6028(99)00753-0 CrossRefADSGoogle Scholar
  18. Sahaym U, Norton MG (2008) Advances in the application of nanotechnology in enabling a ‘hydrogen economy’. J Mater Sci 43:5395–5429. doi:10.1007/s10853-008-2749-0 CrossRefADSGoogle Scholar
  19. Schimpf S, Lucas M, Mohr C, Roddemerck U, Brückner A, Radnik J, Hofmeister H, Claus P (2002) Supported gold nanoparticles: in-depth catalyst characterization and application in hydrogen and oxidation reactions. Catal Today 72:63–78. doi:doi:10.1016/S0920-5861(01)00479-5 CrossRefGoogle Scholar
  20. Shalaev VM (2002) Optical nonlinearities of fractal composites. Top Appl Phys 82:93–114. doi:10.1007/3-540-44948-5_5 CrossRefADSGoogle Scholar
  21. Venables JA (1994) Atomic processes in crystal growth. Surf Sci 299–300:798–817. doi:10.1016/0039-6028(94)90698-X CrossRefGoogle Scholar
  22. Wynblatt P, Gjostein NA (1975) Supported metal crystallites. Prog Solid State Chem 9:21–58. doi:10.1016/0079-6786(75)90013-8 CrossRefGoogle Scholar
  23. Wynblatt P, Gjostein NA (1976) Particle growth in model supported metal catalysts—I Theory. Acta Metall 24:1165–1174. doi:10.1016/0001-6160(76)90034-1 CrossRefGoogle Scholar
  24. Yevtushenko O, Natter H, Hempelmann R (2006) Grain-growth kinetics of nanostructured gold. Thin Solid Films 515:353–356. doi:10.1016/j.tsf.2005.12.098 CrossRefADSGoogle Scholar
  25. Zhu L, Lu G, Mao S, Chen J (2007) Ripening of silver nanoparticles on carbon nanotubes. J Nanopart Res 2:149–156. doi:doi:10.1142/S1793292007000507 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Timothy Turba
    • 1
  • M. Grant Norton
    • 1
  • Ishwar Niraula
    • 2
  • David N. McIlroy
    • 2
  1. 1.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA
  2. 2.Department of PhysicsUniversity of IdahoMoscowUSA

Personalised recommendations