Hydrothermal synthesis, controlled microstructure, and photoluminescence of hydrated Zn3(PO4)2: Eu3+ nanorods and nanoparticles

Research Paper


In this article, Zn3(PO4)2: Eu3+ nanorods and nanoparticles have been prepared by the hydrothermal method. The optimum pH value has been found at the range of 3–8 for the preparation of orthorhombic Zn3(PO4)2: Eu3+, whose morphologies are affected by the pH value. At the same temperature for hydrothermal reaction, the product presents nanorods at pH 4, while it shows nanoparticles at pH 6. Furthermore, the influences of the hydrothermal reaction temperature on the morphology and microstructure have also been investigated, suggesting that the morphology and microstructure cannot be changed with the hydrothermal temperature at the same pH value. Finally, the photoluminescence of Eu3+ on Zn3(PO4) nanorod/nanoparticle have been studied, both of which present the characteristic emission lines of Eu3+ and the 5D07F1 transition corresponds the strongest emission. This indicates that Eu3+ occupied the inversion center in Zn3(PO4) host.


Hydrated zinc phosphate Europium ion Hydrothermal synthesis Luminescence Nanorod Nanoparticle 


  1. Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271:933–937. doi:10.1126/science.271.5251.933 CrossRefADSGoogle Scholar
  2. Buissette V, Huignard A, Gacoin T, Boilot JP, Aschehoug P, Viana B (2003) Luminescence properties of YVO4: Ln (Ln = Nd, Yb, and Yb–Er) nanoparticles. Surf Sci 532:444–449. doi:10.1016/S0039-6028(03)00203-6 CrossRefADSGoogle Scholar
  3. Campostrini R, Carturan G, Ferrari M, Montagna M, Pilla O (1992) Luminescence of Eu3+ ions during thermal densification of SiO2 gel. J Mater Res 7:745–753. doi:10.1557/JMR.1992.0745 CrossRefADSGoogle Scholar
  4. Cui Y, Lieber CM (2001) Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291:851–853. doi:10.1126/science.291.5505.851 CrossRefPubMedADSGoogle Scholar
  5. Duan XF, Huang Y, Cui Y, Wang JF, Lieber CM (2001) Indium phosphide nanowires as building blocks for nano scale electronic and optoelectronics devices. Nature 409:66–69. doi:10.1038/35051047 CrossRefPubMedADSGoogle Scholar
  6. Heer S, Lehmann O, Haase M, Gdel HU (2003) Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew Chem Int Ed 42:3179–3182. doi:10.1002/anie.200351091 CrossRefGoogle Scholar
  7. Hu JQ, Li Q, Meng XM, Lee CS, Lee ST (2003) Thermal reduction route to the fabrication of coaxial Zn/ZrO nanocables and ZnO nanotubes. Chem Mater 15:305–308. doi:10.1021/cm020649y CrossRefGoogle Scholar
  8. Huignard A, Gacoin T, Boilot JP (2000) Synthesis and luminescence properties of colloidal YVO4: Eu phosphors. Chem Mater 12:1090–1094. doi:10.1021/cm990722t CrossRefGoogle Scholar
  9. Huignard A, Buissette V, Laurent G, Gacoin T, Boilot JP (2002) Synthesis and characterizations of YVO4: Eu colloids. Chem Mater 14:2264–2269. doi:10.1021/cm011263a CrossRefGoogle Scholar
  10. Huignard A, Buissette V, Franville AC, Gacoin T, Boilot JP (2003) Emission processes in YVO4: Eu nanoparticles. J Phys Chem B 107:6754–6759. doi:10.1021/jp0342226 CrossRefGoogle Scholar
  11. Kijkowska R (2003) Preparation of lanthanide orthophosphates by crystallisation from phosphoric acid solution. J Mater Sci 38:223–228. doi:10.1023/A:1021188810349 CrossRefGoogle Scholar
  12. Lochhead MJ, Bray KL (1994) Spectroscopic characterization of doped sol-gel silica-gels and glasses—evidence of inner-sphere complexation of europium (II). J Noncryst Solids 170:143–154. doi:10.1016/0022-3093(94)90040-X CrossRefADSGoogle Scholar
  13. Meyssamy H, Riwotzki K, Kornowski A, Naused S, Haase M (1999) Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO4: Eu, LaPO4: Ce, and LaPO4: Ce, Tb. Adv Mater 11:840–844. doi:10.1002/(SICI)1521-4095(199907)11:10<840::AID-ADMA840>3.0.CO;2-2CrossRefGoogle Scholar
  14. Nishihama S, Hirai T, Komasawa I (2002) The preparation of rare earth phosphate fine particles in an emulsion liquid membrane system. J Mater Chem 12:1053–1057. doi:10.1039/b105743j CrossRefGoogle Scholar
  15. Park WI, Yi GC, Kim M, Pennycook SJ (2002) ZnO nanoneedles grown vertically on Si substrates by non-catalytic vapor-phase epitaxy. Adv Mater 14:1841–1843. doi:10.1002/adma.200290015 CrossRefGoogle Scholar
  16. Pawlig O, Trettin R (1999) Synthesis and characterization of alpha-hopeite, Zn3(PO4)2 center dot 4H(2)·O. Mater Res Bull 34:1959–1966. doi:10.1016/S0025-5408(99)00206-8 CrossRefGoogle Scholar
  17. Riwotzki K, Haase M (1998) Wet-chemical synthesis of doped colloidal nanoparticles: YVO4: Ln (Ln = Eu, Sm, Dy). J Phys Chem B 102:10129–10135. doi:10.1021/jp982293c CrossRefGoogle Scholar
  18. Riwotzki K, Meyssamy H, Kornowski A, Haase M (2000) Liquid-phase synthesis of doped nanoparticles: colloids of luminescing LaPO4: Eu and CePO4: Tb particles with a narrow particle size distribution. J Phys Chem B 104:2824–2828. doi:10.1021/jp993581r CrossRefGoogle Scholar
  19. Schuetz P, Caruso F (2002) Electrostatically assembled fluorescent thin films of rare-earth-doped lanthanum phosphate nanoparticles. Chem Mater 14:4509–4516. doi:10.1021/cm0212257 CrossRefGoogle Scholar
  20. Shen WY, Lin J, Yu M, Han XM (2004) Citrate-gel synthesis and luminescent properties of alpha-Zn3(PO4)2 doped with Eu3+. J Rare Earths 22:87–90Google Scholar
  21. Shen G, Bando Y, Lee CJ (2005) Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process. J Phys Chem B 109:10578–10583. doi:10.1021/jp051078a CrossRefPubMedGoogle Scholar
  22. Stouwdam JW, Van Veggel FCJM (2002) Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett 2:733–737. doi:10.1021/nl025562q CrossRefADSGoogle Scholar
  23. Tang Q, Zhou W, Zhang W, Ou S, Jiang K, Yu W, Qian YT (2005) Size-controllable growth of single crystal In(OH)3 and In2O3 nanocubes. Cryst Growth Des 5:147–150. doi:10.1021/cg049914d CrossRefGoogle Scholar
  24. Wang ZL (2000) Characterizing the structure and properties of individual wire-like nanoentities. Adv Mater 12:1295–1298. doi:10.1002/1521-4095(200009)12:17<1295::AID-ADMA1295>3.0.CO;2-BCrossRefGoogle Scholar
  25. Xia YN, Yang PD (2003) Chemistry and physics of nanowires. Adv Mater 15:351–352. doi:10.1002/adma.200390086 CrossRefGoogle Scholar
  26. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15:353–389. doi:10.1002/adma.200390087 CrossRefGoogle Scholar
  27. Xiao XZ, Yan B (2005) Synthesis and luminescent properties of novel RENbO4: Ln(3+) (RE = Y, Gd, Lu; Ln = Eu, Tb) micro-crystalline phosphors. J Noncryst Solids 351:3634–3639. doi:10.1016/j.jnoncrysol.2005.09.018 CrossRefADSGoogle Scholar
  28. Xiao XZ, Yan B (2006a) Hybrid precursors synthesis and optical properties of LnNbO4: Bi3+ blue phosphors and Bi3+ sensitizing of on Dy3+’s luminescence in YNbO4 matrix. J Alloy Compd 421:252–257. doi:10.1016/j.jallcom.2005.11.035 CrossRefGoogle Scholar
  29. Xiao XZ, Yan B (2006b) Chemical co-precipitation of hybrid precursors to synthesize Eu3+/Dy3+ activated YNbxP1−xO4 and YNbxP1−xO4 microcrystalline phosphors. J Noncryst Solids 352:3047–3051. doi:10.1016/j.jnoncrysol.2006.03.071 CrossRefADSGoogle Scholar
  30. Xiao XZ, Yan B (2007a) Chemical co-precipitation synthesis and photoluminescence of Eu3+ or Dy3+ doped Zn3Nb2O8 microcrystalline phosphors from hybrid precursors. Mater Sci Eng B 136:154–158. doi:10.1016/j.mseb.2006.09.020 CrossRefGoogle Scholar
  31. Xiao XZ, Yan B (2007b) Photoluminescence of Y0.6Gd0.4NbO4: Eu3+/Tb3+ micrometric phosphors derived from hybrid precursors. Mater Lett 61:1649–1653. doi:10.1016/j.matlet.2006.07.092 CrossRefGoogle Scholar
  32. Xiao XZ, Yan B (2007c) Matrix-induced synthesis and photoluminescence of M2RENbO6: Eu3+ (M = Ca, Sr, Ba; RE = Y, Gd, La) phosphors by hybrid precursors. J Alloy Compd 433:246–250. doi:10.1016/j.jallcom.2006.06.058 CrossRefGoogle Scholar
  33. Xiao XZ, Yan B (2008a) REMO4 (RE = Y, Gd; M = Nb, Ta) phosphors from hybrid precursors: microstructure and luminescence. J Mater Res 23:679–687. doi:10.1557/jmr.2008.0083 CrossRefADSGoogle Scholar
  34. Xiao XZ, Yan B (2008b) In-situ chemical co-precipitation composition of hybrid precursors and luminescence of Y1 − xGdNbO4: RE3+, (RE = Tb, Eu) micron crystalline phosphors. J Alloy Compd 456:447–451. doi:10.1016/j.jallcom.2007.02.098 CrossRefGoogle Scholar
  35. Zhang XH, Liu YC, Wang XH, Chen SJ, Wang GR, Zhang JY, Lu YM, Shen DZ, Fan XW (2005) Structural properties and photoluminescence of ZnO nanowalls prepared by two-step growth with oxygen-plasma-assisted molecular beam epitaxy. J Phys Condens Matter 17:3035–3042. doi:10.1088/0953-8984/17/19/017 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of ChemistryTongji UniversityShanghaiChina

Personalised recommendations