Magnetic properties, complex permittivity and permeability of FeNi nanoparticles and FeNi/AlOx nanocapsules

  • X. G. Liu
  • D. Y. Geng
  • C. J. Choi
  • J. C. Kim
  • Z. D. Zhang
Research Paper

Abstract

Structures, surface composition, magnetic properties, and electromagnetic properties of FeNi nanoparticles and FeNi/AlOx nanocapsules were investigated. The compositions of these nanoparticles/nanocapsules were found to be quite different from those of the corresponding targets. Al atoms could promote the evaporation of Fe atoms and suppress the evaporation of Ni atoms in the arc discharge process. The protective AlOx shell can effectively increase the resistivity of FeNi nanocapsules and suppress the growth of FeNi nanoparticles and reduce their magnetization. For FeNi nanoparticles/nanocapsules, the same natural resonance appearing at 6.4 GHz originates mainly from magnetic FeNi cores. FeNi nanoparticles/nanocapsules exhibit promising possibility for application as a new type of electromagnetic wave shield/absorbent.

Keywords

Nanoparticles Shell/core structure Magnetic properties Electromagnetic properties Nanocomposites Nanoelectronics 

References

  1. Dong XL, Zhang ZD, Jin SR, Kim BK (2000) Characterization and magnetic properties of Fe–Co ultrafine particles. J Magn Magn Mater 210(1–3):143–149. doi:10.1016/S0304-8853(99)00616-2 CrossRefADSGoogle Scholar
  2. Feng WJ, Li D, Li WF, Ma S, Li YB, Xiong DK, Zhang WS, Zhang ZD (2006) Structure and magnetic properties of Cr(N)–β–Cr2N nanoparticles prepared by arc-discharge. J Alloy Compd 425(1–2):4–9. doi:10.1016/j.jallcom.2006.01.019 CrossRefGoogle Scholar
  3. Geng DY, Park WY, Kim JC, Yu JH, Choi CJ, Zhang ZD (2005) Synthesis and characterization of FeCoNiAl nanocapsules by plasma arc discharge process. J Mater Res 20(9):2534–2543. doi:10.1557/jmr.2005.0304 CrossRefADSGoogle Scholar
  4. Ikeda K, Kobayashi N, Fujimori H (2002) Multilayer nanogranular magnetic thin films for GHz applications. J Appl Phys 92(9):5395–5400. doi:10.1063/1.1510562 CrossRefADSGoogle Scholar
  5. Kim SS, Kim ST, Ahn JM, Kim KH (2004) Magnetic and microwave absorbing properties of Co–Fe thin films plated on hollow ceramic microspheres of low density. J Magn Magn Mater 271(1):39–45. doi:10.1016/j.jmmm.2003.09.012 CrossRefMathSciNetADSGoogle Scholar
  6. Kim SS, Kim ST, Yoon YC, Lee KS (2005) Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J Appl Phys 97(10):10F905CrossRefGoogle Scholar
  7. Liu JR, Itoh M, Machida KI (2003) Electromagnetic wave absorption properties of α-Fe/Fe3B/Y2O3 nanocomposites in gigahertz range. Appl Phys Lett 83(19):4017–4019. doi:10.1063/1.1623934 CrossRefADSGoogle Scholar
  8. Liu W, Zhong W, Jiang HY, Tang NJ, Wu XL, Du WY (2005) Synthesis and magnetic properties of FeNi3/Al2O3 core-shell nanocomposites. Eur Phys J B 46(4):471–474. doi:10.1140/epjb/e2005-00276-2 MATHCrossRefADSGoogle Scholar
  9. Liu XG, Geng DY, Du J, Ma S, Li B, Shang PJ, Zhang ZD (2008a) The large cryogenic magnetocaloric effect of TbAl2 nanocapsules. Scr Mater 59(3):340–343. doi:10.1016/j.scriptamat.2008.04.005 CrossRefGoogle Scholar
  10. Liu XG, Geng DY, Ma S, Meng H, Tong M, Kang DJ, Zhang ZD (2008b) Electromagnetic-wave absorption properties of FeCo nanocapsules and coral-like aggregates self-assembled by the nanocapsules. J Appl Phys 104(6):064319. doi:10.1063/1.2982411 CrossRefADSGoogle Scholar
  11. Liu XG, Geng DY, Meng H, Shang PJ, Zhang ZD (2008c) Microwave-absorption properties of ZnO-coated iron nanocapsules. Appl Phys Lett 92(17):173117. doi:10.1063/1.2919098 CrossRefADSGoogle Scholar
  12. Liu XG, Geng DY, Shang PJ, Meng H, Yang F, Li B, Kang DJ, Zhang ZD (2008d) Fluorescence and microwave-absorption properties of multi-functional ZnO-coated α-Fe solid-solution nanocapsules. J Phys D Appl Phys 41(17):175006. doi:10.1088/0022-3727/41/17/175006 CrossRefADSGoogle Scholar
  13. Liu XG, Geng DY, Zhang ZD (2008e) Microwave-absorption properties of FeCo microspheres self-assembled by Al2O3-coated FeCo nanocapsules. Appl Phys Lett 92(24):243110. doi:10.1063/1.2945639 CrossRefADSGoogle Scholar
  14. Lu B, Dong XL, Huang H, Zhang XF, Zhu XG, Lei JP, Sun JP (2008) Microwave absorption properties of the core/shell-type iron and nickel nanoparticles. J Magn Magn Mater 320(6):1106–1111. doi:10.1016/j.jmmm.2007.10.030 CrossRefADSGoogle Scholar
  15. Ma S, Wang YB, Geng DY, Li J, Zhang ZD (2005) Structure and magnetic properties of Co–Cr solid-solution nanocapsules prepared by arc discharge. J Appl Phys 98(9):094304. doi:10.1063/1.2125115 CrossRefADSGoogle Scholar
  16. Miles PA, Westphale WB, Hippel A (1957) Dielectric spectroscopy of ferromagnetic semiconductors. Rev Mod Phys 29(3):279–307. doi:10.1103/RevModPhys.29.279 CrossRefADSGoogle Scholar
  17. Ohnuma S, Kobayashi N, Masumoto T, Mitami S, Fujimori H (1999) Magnetostriction and soft magnetic properties of (Co1−xFex)–Al–O granular films with high electrical resistivity. J Appl Phys 85(8):4574–4576. doi:10.1063/1.370412 CrossRefADSGoogle Scholar
  18. Ramo S, Whinnery JR, Duzer TV (1984) Fields and waves in communication electronics. Wiley, New York, p 181Google Scholar
  19. Ravindran R, Gangopadhyay K, Gangopadhyay S, Mehta N, Biswas N (2006) Permittivity enhancement of aluminum oxides thin films with the addition of silver nanoparticles. Appl Phys Lett 89(26):263511. doi:10.1063/1.2425010 CrossRefADSGoogle Scholar
  20. Wagner CD, Passoja DE, Hillery HF, Kinisky TG, Six HA, Jansen WT, Taylor JA (1982) Auger and photoelectron line energy relationships in aluminum-oxygen and silicon-oxygen compounds. J Vac Sci Technol 21(4):933–944. doi:10.1116/1.571870 CrossRefADSGoogle Scholar
  21. Zhang ZD (2004) Nanocapsules. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology, vol 6. American Scientific Publishers, Stevenson Ranch, California, pp 77–160Google Scholar
  22. Zhang ZD (2007) Magnetic nanocapsules. J Mater Sci Technol 23(1):1–25. doi:10.1179/174328407X154374 CrossRefGoogle Scholar
  23. Zhang XX, Hernandez JM, Tejada J, Sole R, Ruiz X (1996) Magnetic properties and domain-wall motion in single-crystal BaFe10.2Sn0.74Co0.66O19. Phys Rev B 53(6):3336–3340. doi:10.1103/PhysRevB.53.3336 CrossRefADSGoogle Scholar
  24. Zhang ZD, Yu JL, Zheng JG, Skorvanek I, Kovac J, Dong XL, Li ZJ, Jin SR, Yang HC, Guo ZJ, Liu W, Zhao XG (2001) Structure and magnetic properties of boron-oxide-coated Fe(B) nanocapsules prepared by arc discharge in diborane. Phys Rev B 64(2):024404. doi:10.1103/PhysRevB.64.024404 CrossRefADSGoogle Scholar
  25. Zhang XF, Dong XL, Huang H, Liu YY, Wang WN, Zhu XG, Lv B, Lei JP, Lee CG (2006) Microwave absorption properties of the carbon-coated nickel nanocapsules. Appl Phys Lett 89(5):053115. doi:10.1063/1.2236965 CrossRefADSGoogle Scholar
  26. Zhang XF, Dong XL, Huang H, Liu YY, Lv B, Lei JP, Choi CJ (2007) Microstructure and microwave absorption properties of carbon-coated iron nanocapsules. J Phys D Appl Phys 40(17):5383–5387. doi:10.1088/0022-3727/40/17/056 CrossRefADSGoogle Scholar
  27. Zhao YW, Ni CY, Kruczynski D, Zhang XK, Xiao JQ (2004) Exchange-coupled soft magnetic FeNi–SiO2 nanocomposite. J Phys Chem B 108(12):3691–3693. doi:10.1021/jp037588r CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • X. G. Liu
    • 1
  • D. Y. Geng
    • 1
  • C. J. Choi
    • 2
  • J. C. Kim
    • 3
  • Z. D. Zhang
    • 1
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, and International Centre for Materials PhysicsChinese Academy of SciencesShenyangPeople’s Republic of China
  2. 2.Korea Institute of Materials ScienceChangwonSouth Korea
  3. 3.School of Materials Science and EngineeringUniversity of UlsanUlsanSouth Korea

Personalised recommendations