Aquatic toxicity evaluation of TiO2 nanoparticle produced from sludge of TiCl4 flocculation of wastewater and seawater

  • B. C. Lee
  • S. Kim
  • H. K. Shon
  • S. Vigneswaran
  • S. D. Kim
  • J. Cho
  • In S. Kim
  • K. H. Choi
  • J. B. Kim
  • H. J. Park
  • J.-H. Kim
Research Paper

Abstract

Flocculation using titanium tetrachloride (TiCl4) as a coagulant is an efficient and economical application because the flocculated sludge can be recycled to produce a valuable byproduct, namely titanium dioxide (TiO2) nanoparticles. However, toxicity of TiCl4 has not yet been assessed while it is used in water treatment. The aquatic toxicity of TiCl4 flocculation process was investigated to assess the environmental safety of the coagulant. D. magna and V. fischeri bioassays were carried out to evaluate the supernatant toxicity after TiCl4 flocculation. Artificial wastewater, biologically treated sewage effluent, and seawater were used to study the toxicity of TiCl4 flocculation. Results showed that supernatant toxicity was very low when TiCl4 flocculation was conducted (no observed effect concentration = 100 mg/L and lowest observed effect concentration = 150 mg/L exposed to D. magna and V. fischeri, respectively). Similarly, TiO2 nanoparticles recovered from wastewater and seawater flocculated sludge were also found to have low toxicity. The regenerated TiO2 nanoparticles indicated low toxicity values when compared to the commercial-TiO2 nanoparticle, P-25.

Keywords

Aquatic toxicity D. magna V. fischeri Flocculation TiO2 nanoparticle Environment Health and safety EHS 

References

  1. ASTM International (2002) Standard test method for assessing the microbial detoxification of chemically contaminated water and soil using a toxicity test with a luminescent marine bacterium. Document number: ASTM D5660-96. ASTM International, West ConshohockenGoogle Scholar
  2. Bozzi A, Dhananjeyan M, Guasaquillo I, Parra S, Pulgarin C, Weins C, Kiwi J (2004) Evolution of toxicity during melamine photocatalysis with TiO2 suspensions. J Photochem Photobiol Chem 162(1):179–185. doi:10.1016/S1010-6030(03)00352-6 CrossRefGoogle Scholar
  3. DeWolfe J, Dempsey B, Taylor M, Potter JW (2003) Guidance manual for coagulant changeover. American Water Works Association Press, DenverGoogle Scholar
  4. Gellert G (2000) Sensitivity and significance of luminescent bacteria in chronic toxicity testing based on growth and bioluminescence. Ecotoxicol Environ Saf 45:87–91. doi:10.1006/eesa.1999.1849 CrossRefPubMedGoogle Scholar
  5. Jennings VLK, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photo-bacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res 14:3448–3456. doi:10.1016/S0043-1354(01)00067-7 CrossRefGoogle Scholar
  6. Johnson DW, Haley MV, Hart GS, Muse WT, Landis WG (1986) Acute tocixity of brass particles to Daphnia magna. J Appl Toxicol 6(3):225–228. doi:10.1002/jat.2550060313 CrossRefPubMedGoogle Scholar
  7. Kapias T, Griffiths RF (2005) Accidental releases of titanium tetrachloride (TiCl4) in the context of major hazards—spill behaviour using REACTPOOL. J Hazard Mater 119(1–3):41–52. doi:10.1016/j.jhazmat.2004.12.001 CrossRefPubMedGoogle Scholar
  8. Lee KP, Kelly DP, Schneide PW (1986) Inhalation toxicity study on rats exposed to titanium tetrachloride atmospheric hydrolysis products for two years. Toxicol Appl Pharmacol 83(1):30–45. doi:10.1016/0041-008X(86)90320-0 CrossRefPubMedGoogle Scholar
  9. Lewis RJ (1996) Sax’s dangerous properties of industrial materials, 9th edn. Van Nostrand Reinhold, New YorkGoogle Scholar
  10. Lokshin EP, Belikov ML (2003) Water purification with titanium compounds to remove fluoride ions. Russ J Appl Chem 76(9):1466–1471. doi:10.1023/B:RJAC.0000012668.42038.40 CrossRefGoogle Scholar
  11. Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25(4):1132–1137. doi:10.1897/05-278R.1 CrossRefPubMedGoogle Scholar
  12. Schaefer M, Scott-Fordsmand J (2006) Nanoparticles: does size matters? In: 16th annual meeting of SETAC Europe, The Hague, Netherlands, 7 to 11 May 2006, p. 222, Meeting, Lille (France), 22 May 2005/26 May 2005Google Scholar
  13. Seo GT, Ohgaki S, Suzuki Y (1997) Sorption characteristics of biological powdered activated carbon in BPAC-MF (biological activated carbon-microfiltration) system for refractory organic removal. Water Sci Technol 35(7):163–170. doi:10.1016/S0273-1223(97)00127-3 CrossRefGoogle Scholar
  14. Shon HK, Vigneswaran S, Ngo HH (2005) Is semi-flocculation effective to ultrafiltration? Water Res 39(1):147–153. doi:10.1016/j.watres.2004.09.003 CrossRefPubMedGoogle Scholar
  15. Shon HK, Vigneswaran S, Kim IS, Cho J, Kim GJ, Kim J-B, Kim J-H (2007) Preparation of functional titanium oxide (TiO2) from sludge produced by titanium tetrachloride (TiCl4) flocculation of wastewater. Environ Sci Technol 41(4):1372–1377. doi:10.1021/es062062g CrossRefPubMedGoogle Scholar
  16. Suryanarayana C (1995) Nanocrystalline materials. Int Mater Rev 40:41–64Google Scholar
  17. Upton WV, Buswell AM (1937) Titanium salts in water purification. Ind Eng Chem (August):870–871. doi:10.1021/ie50332a006
  18. USEPA (1993) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Cinciniti, EPA/600/4-90/027FGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • B. C. Lee
    • 1
    • 2
  • S. Kim
    • 1
    • 3
  • H. K. Shon
    • 4
  • S. Vigneswaran
    • 4
  • S. D. Kim
    • 1
  • J. Cho
    • 1
  • In S. Kim
    • 1
  • K. H. Choi
    • 2
  • J. B. Kim
    • 5
  • H. J. Park
    • 5
  • J.-H. Kim
    • 5
  1. 1.Environmental Science and TechnologyGwangju Institute of Science and TechnologyGwangjuSouth Korea
  2. 2.Environmental Exposure Assessment DivisionNational Institute of Environmental ResearchIncheonSouth Korea
  3. 3.Water Research CenterKorea Institute of Water and Environment, Korea Water Resources and Corporation (K-water)DaejeonSouth Korea
  4. 4.Faculty of EngineeringUniversity of Technology, SydneyUltimoAustralia
  5. 5.School of Applied Chemical Engineering and Center for Functional Nano Fine Chemicals (BK21)Chonnam National UniversityGwangjuSouth Korea

Personalised recommendations