Journal of Nanoparticle Research

, 11:2061

Dispersion of nanospheres on large glass substrate by amorphous or polycrystalline silicon deposition for localized surface plasmon resonance

  • Xiaodong Zhou
  • Nan Zhang
  • Kai Yu Liu
  • Christina Tan
  • Wolfgang Knoll
Research Paper

Abstract

Nanosphere lithography is a cost-effective way to fabricate noble metal nanostructures for plasmonics. However, dispersing nanospheres on a large area of glass substrate is a difficulty encountered when transparent substrate is required in applications such as localized surface plasmon resonance or surface enhanced Raman spectroscopy. Because poly(diallyldimethyl ammonium chloride) (PDDA) on silicon surface introduces a force that can disperse nanospheres on silicon, in this article, we modify the glass surface through amorphous or polycrystalline silicon deposition and thus well disperse polystyrene or silica nanospheres over a glass area of more than 2 cm × 2 cm. Transmission loss of the glass substrate caused by amorphous or polycrystalline silicon deposition is analyzed with good agreement to experimental spectra, and localized surface plasmon resonance signals generated from the gold nanostructures fabricated on these substrates are measured and yield a sensitivity of 317 nm/RIU, which prove the feasibility and effectiveness of our method.

Keywords

Nanosphere lithography (NSL) Nanospheres Localized surface plasmon resonance (LSPR) Photonics 

Supplementary material

11051_2008_9571_MOESM1_ESM.doc (7.6 mb)
MOESM1 (DOC 7810 kb)

References

  1. Born M, Wolf E (1999) Principles of optics, electromagnetic theory of propagation, interference and diffraction of light, 7th edn. Cambridge University Press, CambridgeGoogle Scholar
  2. Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7:1113–1118. doi:10.1021/nl062317o CrossRefPubMedADSGoogle Scholar
  3. Fujiwara K, Watarai H, Itoh H et al (2006) Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy. Anal Bioanal Chem 386:639–644. doi:10.1007/s00216-006-0559-2 CrossRefPubMedGoogle Scholar
  4. Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596–10604. doi:10.1021/ja020393x CrossRefPubMedGoogle Scholar
  5. Haes AJ, Stuart DA, Nie S et al (2004) Using solution-phase nanoparticles, surface-confined nanoparticle arrays and single nanoparticles as biological sensing platforms. J Fluoresc 14:355–367. doi:10.1023/B:JOFL.0000031817.35049.1f CrossRefPubMedGoogle Scholar
  6. Haes AJ, Chang L, Klein WL et al (2005) Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc 127:2264–2271. doi:10.1021/ja044087q CrossRefPubMedGoogle Scholar
  7. Hanarp P, Sutherland DS, Gold J et al (2003) Control of nanoparticle film structure for colloidal lithography. Colloid Surf A 214:23–36. doi:10.1016/S0927-7757(02)00367-9 CrossRefGoogle Scholar
  8. Hirsch LR, Jackson JB, Lee A et al (2003) A whole blood immunoassay using gold nanoshells. Anal Chem 75:2377–2381. doi:10.1021/ac0262210 CrossRefPubMedGoogle Scholar
  9. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. doi:10.1002/adma.200400271 CrossRefGoogle Scholar
  10. Kim D-K, Kerman K, Saito M et al (2007) Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry. Anal Chem 79:1855–1864. doi:10.1021/ac061909o CrossRefPubMedGoogle Scholar
  11. Modreanu M, Gartner M, Cobianu C et al (2004) Optical properties of silicon thin films related to LPCVD growth condition. Thin Solid Films 450:105–110. doi:10.1016/j.tsf.2003.10.047 CrossRefADSGoogle Scholar
  12. Palik ED (1985) Handbook of optical constants of solids, vol I. Academic Press, New YorkGoogle Scholar
  13. Palik ED (1991) Handbook of optical constants of solids, vol II. Academic Press, New YorkGoogle Scholar
  14. Palik ED (1998) Handbook of optical constants of solids. vol III, Academic Press, New YorkGoogle Scholar
  15. Riboh JC, Haes AJ, McFarland AD et al (2003) A nanoscale optical biosensor: real-time immunoassay in physiological buffer enabled by improved nanoparticles adhesion. J Phys Chem B 107:1772–1780. doi:10.1021/jp022130v CrossRefGoogle Scholar
  16. Rochholz H, Bocchlo N, Kreiter M (2007) Tuning resonances on crescent-shaped noble-metal nanoparticles. N J Phys 9:53. doi:10.1088/1367-2630/9/3/053 CrossRefGoogle Scholar
  17. Shumaker-Parry JS, Rochholz H, Kreiter M (2005) Fabrication of crescent-shaped optical antennas. Adv Mater 17:2131–2134. doi:10.1002/adma.200500063 CrossRefGoogle Scholar
  18. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. doi:10.1146/annurev.physchem.58.032806.104607 CrossRefPubMedGoogle Scholar
  19. Yang S-M, Jang SG, Choi D-G et al (2006) Nanomachining by colloidal lithography. Small 2:458–475. doi:10.1002/smll.200500390 CrossRefPubMedGoogle Scholar
  20. Yonzon CR, Jeoung E, Zou J et al (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126:12669–12676. doi:10.1021/ja047118q CrossRefPubMedGoogle Scholar
  21. Zhang G, Wang D, Mohwald H (2005) Patterning microsphere surfaces by templating colloidal crystals. Nano Lett 5:143–146. doi:10.1021/nl048121a CrossRefPubMedADSGoogle Scholar
  22. Zhang G, Wang D, Mohwald H (2007) Ordered binary arrays of Au nanoparticles derived from colloidal lithography. Nano Lett 7:127–132. doi:10.1021/nl062284c CrossRefPubMedADSGoogle Scholar
  23. Zhao J, Zhang X, Yonzon C et al (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1:219–228. doi:10.2217/17435889.1.2.219 CrossRefPubMedGoogle Scholar
  24. Zhou X, Knoll W, Liu KY et al (2008a) Design and fabrication of gold nanostructures with dispersed nanospheres for localized surface plasmon resonance applications. J Nanophotonics 2:023502. doi:10.1117/1.2885744 CrossRefGoogle Scholar
  25. Zhou X, Virasawmy S, Knoll W et al (2008b) Fabrication of gold nanocrescents by angle deposition with nanosphere lithography for LSPR applications. J Nanosci Nanotechnol 8:3369–3378. doi:10.1166/jnn.2008.147 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Xiaodong Zhou
    • 1
  • Nan Zhang
    • 1
  • Kai Yu Liu
    • 2
  • Christina Tan
    • 1
  • Wolfgang Knoll
    • 1
  1. 1.Institute of Materials Research and Engineering (IMRE)A*STAR (Agency for Science, Technology and Research)SingaporeSingapore
  2. 2.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations