Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation

  • Manish Shinde
  • Amol Pawar
  • Soumen Karmakar
  • Tanay Seth
  • Varsha Raut
  • Sunit Rane
  • Sudha Bhoraskar
  • Dinesh Amalnerkar
Research Paper

Abstract

Uncapped silver nanoparticles were synthesized by DC arc thermal plasma technique. The synthesized nanoparticles were structurally cubic and showed wide particle size variation (between 20–150 nm). Thick film paste formulated from such uncapped silver nanoparticles was screen-printed on alumina substrates and the resultant ‘green’ films were fired at different firing temperatures. The films fired at 600 °C revealed better microstructure properties and also yielded the lowest value of sheet resistance in comparison to those corresponding to conventional peak firing temperature of 850 °C. Our findings directly support the role of silver nanoparticles in substantially depressing the operative peak firing temperature involved in traditional conductor thick films technology.

Keywords

Silver Nanoparticles Plasma synthesis TEM Conductivity SEM Thermal plasma reactor Thin film 

References

  1. Fritzsche W, Taton T (2003) Metal nanoparticles as labels for heterogeneous, chip based DNA detection. Nanotechnology 14:R63–R73. doi:10.1088/0957-4484/14/12/R01 CrossRefADSGoogle Scholar
  2. Gonon P, Aoudefel A (2006) Electrical properties of epoxy/silver nanocomposites. J Appl Phys 99(1–8):024308CrossRefADSGoogle Scholar
  3. Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63. doi:10.1016/j.jhin.2005.04.015 CrossRefPubMedGoogle Scholar
  4. Rane SB, Puri V, Amalnerkar DP (2000) A study on sintering and microstructure development of fritless silver thick film conductors. J Mat Sci Mat Electron 11:667–674. doi:10.1023/A:1008914424013 CrossRefGoogle Scholar
  5. Rane SB, Khanna PK, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003a) Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Mater Chem Phys 82:237–245. doi:10.1016/S0254-0584(03)00236-0 CrossRefGoogle Scholar
  6. Rane SB, Seth T, Phatak GJ, Amalnerkar DP, Das BK (2003b) Influence of surfactants treatment on silver powder and its thick films. Mater Lett 57:3096–3100. doi:10.1016/S0167-577X(03)00003-X CrossRefGoogle Scholar
  7. Savage J (1976) In: Holmes PJ, Loasby RG (eds) Handbook of thick film technology. Electrochemical Publications, Scotland, pp 97–113Google Scholar
  8. Umarji GG, Ketkar SA, Phatak GJ, Giramkar VD, Mulik UP, Amalnerkar DP (2005) An aqueous developable photoimageable silver conductor composition for high-density electronic packaging. Microelectron Reliab 45:1903–1909. doi:10.1016/j.microrel.2005.03.007 CrossRefGoogle Scholar
  9. Wentworth SM, Dillaman BL, Chadwick JR, Ellis CD, Johnson RW (1997) Attenuation in silver-filled conductive epoxy interconnects. IEEE Trans Compon Packag Manuf Technol Part A 20:52–59CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Manish Shinde
    • 1
  • Amol Pawar
    • 1
  • Soumen Karmakar
    • 2
  • Tanay Seth
    • 1
  • Varsha Raut
    • 1
  • Sunit Rane
    • 1
  • Sudha Bhoraskar
    • 2
  • Dinesh Amalnerkar
    • 1
  1. 1.Centre for Materials for Electronics Technology (C-MET)PuneIndia
  2. 2.Department of PhysicsPune UniversityPuneIndia

Personalised recommendations