Synthesis of mixed metallic nanoparticles by spark discharge

  • N. S. Tabrizi
  • Q. Xu
  • N. M. van der Pers
  • U. Lafont
  • A. Schmidt-Ott
Technology and Applications

Abstract

Short spark discharges (2 μs) were successfully applied to generate mixed particles a few nanometres in diameter by fast quenching. Alloyed Cr–Co electrodes were applied to demonstrate this. Further it was shown that if the anode and the cathode are different materials, the discharge process mixes the vapour of both materials, forming mixed nanoparticles. Electron microscopy (TEM, SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses were performed on the collected particles to study their size, morphology, composition and structure. The average compositions of the particles were measured by inductively coupled plasma (ICP). In addition, online measurements of the particle size distribution by mobility analysis were carried out. In the case of alloyed electrodes (Cr–Co), the relative concentration of the elements in the nanoparticulate sample was consistent with the electrode composition. When using electrodes of different metals (Au–Pd and Ag–Pd) the individual nanoparticles showed a range of mixing ratios. No surface segregation was observed in these mixed noble metal particles. Crystalline nanoparticulate mixed phases were found in all cases.

Keywords

Spark discharge Bimetallic nanoparticles Mixed nanoparticles Metallic nanoparticles Nanomanufacturing 

References

  1. Barret CS et al (1996) The structure of the metals. McGraw-Hill, New York, p 372Google Scholar
  2. Cundall CM, Craggs JD (1955) Electrode vapor jets in spark discharges. Spectrochim Acta 7:149–164. doi:10.1016/0371-1951(55)80057-4 CrossRefADSGoogle Scholar
  3. Devarajan S, Bera P, Sampath S (2005) Bimetallic nanoparticles: a single step synthesis, stabilization, and characterization of Au–Ag, Au–Pd, and Au–Pt in sol–gel derived silicates. J Colloid Interface Sci 290:117–129. doi:10.1016/j.jcis.2005.04.034 PubMedCrossRefGoogle Scholar
  4. Fernández AL, de Pablo L (2002) Formation and the colour development in cobalt spinel pigments. Pigment Resin Technol 31(6):350–356. doi:10.1108/03699420210449043 CrossRefGoogle Scholar
  5. Gale WF, Totemeier TC (2004) Smithells metals reference book. ASM International, The Materials Information Society, Materials ParkGoogle Scholar
  6. Hansen PM (1958) Constitution of binary alloys. McGraw-Hill, New YorkGoogle Scholar
  7. Helsper C, Molter W (1993) Investigation of a new aerosol generator for the production of carbon aggregate particles. Atmos Environ 27A(8):1271–1275Google Scholar
  8. Hinds WC (1999) Aerosol technology, properties, behaviors, and measurements of airborne particles. Wiley, New YorkGoogle Scholar
  9. Hirakawa K, Toshima N (2003) Ag/Rh bimetallic nanoparticles formed by self-assembly from Ag and Rh monometallic nanoparticles in solution. Chem Lett 32(1):78–79. doi:10.1246/cl.2003.78 CrossRefGoogle Scholar
  10. Hume-Rothery W, Raynor GV (1954) The structure of metals and alloys. The Institute of Metals, LondonMATHGoogle Scholar
  11. Jenkins NT, Eagar TW (2003) Submicron particle chemistry: vapor condensation analogous to liquid solidification. JOM J Miner Met Mater Soc 55(6):44–47Google Scholar
  12. Kahng S-J, Choi YJ, Park J-Y, Kuka Y (1999) Phase separation in a two-dimensional Co–Cr alloy. Appl Phys Lett 74(8):1087–1089. doi:10.1063/1.123490 CrossRefADSGoogle Scholar
  13. Kim J-T, Chang J-S (2005) Generation of metal oxide aerosol particles by a pulsed spark discharge technique. J Electrost 63:911–916. doi:10.1016/j.elstat.2005.03.066 CrossRefGoogle Scholar
  14. Kim M-J, Na H-J, Lee KC, Yoo EA, Lee M (2003) Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform. J Mater Chem 13:1789–1792. doi:10.1039/b304006m CrossRefGoogle Scholar
  15. Kubaschewski O, Alcock CB (1979) Metallurgical thermo-chemistry, international series on materials science and technology, vol 24. Pergamon International Library, OxfordGoogle Scholar
  16. Liu HB, Pal U, Medina A, Maldonado C, Ascencio JA (2005) Structural incoherency and structure reversal in bimetallic Au–Pd nanoclusters. Phys Rev B71:075403 1–075403 6Google Scholar
  17. Mäkelä JM, Aalto P, Gorbunov BZ, Korhonen P (1992) Size distributions from aerosol spark generator. J Aerosol Sci 23(Suppl 1):S233–S236. doi:10.1016/0021-8502(92)90392-9 CrossRefGoogle Scholar
  18. Menon M, Khanra BC (2001) Alloying behaviour in Cu–Pd nanostructures. Physica B 304:181–185. doi:10.1016/S0921-4526(01)00340-4 CrossRefADSGoogle Scholar
  19. Powell A, Van Den Avyle J, Damkroger B, Szekely J, Pal U (1997) Analysis of multicomponent evaporation in electron beam melting and refining of titanium alloy. Metall Mater Trans 28B(6):1227–1239Google Scholar
  20. Predel B, Madelung O (1998) Phase equilibria, crystallographic and thermodynamic data of binary alloys. Springer, BerlinGoogle Scholar
  21. Regen MR, Banerjee IA (2006) Preparation of Au–Pd bimetallic nanoparticles in porous germania nanoparticles: a study of their morphology and catalytic activity. Scr Mater 54:909–914. doi:10.1016/j.scriptamat.2005.10.068 CrossRefGoogle Scholar
  22. Rouquerol F, Rouquerol J, Kenneth SW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, San DiegoGoogle Scholar
  23. Schwyn S, Garwin E, Schmidt-Ott A (1988) Aerosol generation by spark discharge. J Aerosol Sci 19(5):639–642. doi:10.1016/0021-8502(88)90215-7 CrossRefGoogle Scholar
  24. Tabrizi NS, Ullmann M, Vons VA, Lafont U, Schmidt-Ott A (2008) Generation of nanoparticles by spark discharge. J Nanopart Res. doi:10.1007/s11051-008-9407-y Google Scholar
  25. Wang K-W, Chung S-R, Perng T-P (2006) Surface segregation and homogenization of Pd70Ag30 alloy nanoparticles. J Alloy Compd 422:223–226. doi:10.1016/j.jallcom.2005.12.009 CrossRefGoogle Scholar
  26. Waseda Y, Muramatsu A (2004) Morphology control of materials and nanoparticles. Springer, BerlinGoogle Scholar
  27. Yang C-C, Wan C-C, Wang Y-Y (2004) Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition. J Colloid Interface Sci 279:433–439. doi:10.1016/j.jcis.2004.06.098 PubMedCrossRefGoogle Scholar
  28. Yang Y, Saoud KM, Abdelsayed V, Glaspell G, Deevi S, El-Shall MS (2006) Vapor phase synthesis of supported Pd, Au, and unsupported bimetallic nanoparticles catalysts for CO oxidation. Catal Commun 7:281–284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • N. S. Tabrizi
    • 1
  • Q. Xu
    • 2
  • N. M. van der Pers
    • 3
  • U. Lafont
    • 1
  • A. Schmidt-Ott
    • 1
  1. 1.Nanostructured Materials, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands
  2. 2.Laboratory for Material Science, National Centre for HREMDelft University of TechnologyDelftThe Netherlands
  3. 3.Department of Materials Science and Engineering, Faculty of 3mETUDelftDelftThe Netherlands

Personalised recommendations