Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1477–1484 | Cite as

Impact of synthesis parameters on structural and magnetic characteristics of Co-based nanoparticles

  • S. Mourdikoudis
  • K. Simeonidis
  • I. Tsiaoussis
  • C. Dendrinou-Samara
  • M. Angelakeris
  • O. Kalogirou
Research Paper

Abstract

Two different Co-based nanostructures were produced via thermolytic decomposition or reduction of proper cobalt precursors in organic solvents under vigorous stirring. The effect of synthesis parameters on the shape, size, and composition of the particles was examined. We present the differences in the structural and magnetic properties among the as-prepared sub-micron Co ‘polypod-like’ particles, which display a remarkable value for saturation magnetization (182 emu/g), and the hollow CoO nanoparticles, which exhibit weak ferromagnetic features.

Keywords

Cobalt Oleylamine Nanopolypods Hollow CoO Nanostructure 

References

  1. Chen JP, Sorensen CM, Klabunde KJ et al (1995) Enhanced magnetization of nanoscale colloidal cobalt particles. Phys Rev B 51:11527–11532. doi:10.1103/PhysRevB.51.11527 CrossRefADSGoogle Scholar
  2. Cordente N, Respaud M, Senocq et al (2001) Synthesis and magnetic properties of nickel nanorods. Nano Lett 1:565–568. doi:10.1021/nl0100522 CrossRefADSGoogle Scholar
  3. Grimes RW, Lagerlof KPD (1991) Polymorphs of CoO. J Am Ceram Soc 74:270–273. doi:10.1111/j.1151-2916.1991.tb06873.x CrossRefGoogle Scholar
  4. Kan S, Sachan M, Kirchhoff J et al (2005) Crystallographic alignment of nanoparticles during self-assembly. IEEE T Magn 41:3370–3372. doi:10.1109/TMAG.2005.855333 CrossRefADSGoogle Scholar
  5. Martinez-Boubeta C, Simeonidis K, Angelakeris M et al (2006) Critical radius for exchange bias in naturally oxidized Fe nanoparticles. Phys Rev B 74:054430. doi:10.1103/PhysRevB.74.054430 CrossRefADSGoogle Scholar
  6. Mohamed MA, Halawy SA, Ebrahim MM (1994) The non-isothermal decomposition of cobalt acetate tetrahydrate. Therm Anal Calorim 41:387–404. doi:10.1007/BF02549322 CrossRefGoogle Scholar
  7. Mourdikoudis S, Simeonidis K, Angelakeris M et al (2007) Effect of air exposure on structural and magnetic features of FeCo nanoparticles. Mod Phys Lett B 21:1161–1168. doi:10.1142/S0217984907013869 CrossRefADSGoogle Scholar
  8. Murray CB, Sun S, Gaschler W et al (2001) Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J Res Dev 45:47–56CrossRefGoogle Scholar
  9. Ren J, Tilley RD (2007) Shape-controlled growth of platinum nanoparticles. Small 3:1508–1512. doi:10.1002/smll.200700135 PubMedCrossRefGoogle Scholar
  10. Respaud M, Broto JM, Rakoto H et al (1998) Surface effects on the magnetic properties of ultrafine cobalt particles. Phys Rev B 57:2925–2935. doi:10.1103/PhysRevB.57.2925 CrossRefADSGoogle Scholar
  11. Samia ACS, Hyzer K, Schlueter JA et al (2005) Ligand effect on the growth and the digestion of Co nanocrystals. J Am Chem Soc 127:4126–4127. doi:10.1021/ja044419r PubMedCrossRefGoogle Scholar
  12. Seo WS, Shim JH, Oh SJ et al (2005) Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J Am Chem Soc 127:6188–6189. doi:10.1021/ja050359t PubMedCrossRefGoogle Scholar
  13. Shao H, Huang Y, Lee H et al (2006) Cobalt nanoparticles synthesis from Co(CH3COO)2 by thermal decomposition. J Magn Magn Mater 304:e28–e30. doi:10.1016/j.jmmm.2006.02.032 CrossRefADSGoogle Scholar
  14. Simeonidis K, Mourdikoudis S, Moulla M et al (2007) Controlled synthesis and phase characterization of Fe-based nanoparticles obtained by thermal decomposition. J Magn Magn Mater 316:e1–e4. doi:10.1016/j.jmmm.2007.02.009 CrossRefGoogle Scholar
  15. Tzitzios V, Niarchos D, Gjoka M et al (2005a) Synthesis of CoPt nanoparticles by a modified polyol method: characterization and magnetic properties. Nanotechnology 16:287–291. doi:10.1088/0957-4484/16/2/019 CrossRefADSGoogle Scholar
  16. Tzitzios V, Niarchos D, Gjoka M et al (2005b) Synthesis and characterization of 3D CoPt nanostructures. J Am Chem Soc 127:13756–13757. doi:10.1021/ja053044m PubMedCrossRefGoogle Scholar
  17. Wilhelm F, Rogalev A, Poulopoulos P et al (2007) Annealing effect on the induced magnetism of platinum in FePt nanoparticles. Mod Phys Lett B 21:1189–1196CrossRefADSGoogle Scholar
  18. Xiong S, Xi B, Wang C et al (2007) Shape-controlled synthesis of 3D and 1D structures of CdS in a binary solution with L-cysteine’s assistance. Chem Eur J 13:3076–3081. doi:10.1002/chem.200600786 CrossRefGoogle Scholar
  19. Yin Y, Rioux RM, Erdonmez CK et al (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714. doi:10.1126/science.1096566 PubMedCrossRefADSGoogle Scholar
  20. Zhang HT, Chen XH (2005) Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals. Nanotechnology 16:2288–2294. doi:10.1088/0957-4484/16/10/051 CrossRefADSGoogle Scholar
  21. Zhang Z, Blom DA, Gai Z et al (2003) High-yield solvothermal formation of magnetic CoPt alloy nanowires. J Am Chem Soc 125:7528–7529. doi:10.1021/ja035185z PubMedCrossRefGoogle Scholar
  22. Zhong X, Feng Y, Lieberwirth I et al (2006) Facile synthesis of morphology-controlled platinum nanocrystals. Chem Mater 18:2468–2471. doi:10.1021/cm060463p CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Mourdikoudis
    • 1
  • K. Simeonidis
    • 1
  • I. Tsiaoussis
    • 1
  • C. Dendrinou-Samara
    • 2
  • M. Angelakeris
    • 1
  • O. Kalogirou
    • 1
  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Department of ChemistryAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations