Journal of Nanoparticle Research

, Volume 11, Issue 5, pp 1241–1245 | Cite as

One-step growth of gold nanorods using a β-diketone reducing agent

  • Christopher M. Tollan
  • Jon Echeberria
  • Rebeca Marcilla
  • José A. Pomposo
  • David Mecerreyes
Brief Communication


The synthesis and characterisation of gold nanorods have been carried out by reduction of the gold salt HAuCl4. This has been done using a single reducing agent, acetylacetone, rather than the two reducing agents, sodium borohydride and ascorbic acid, normally required by standard wet chemistry methods of gold nanorod formation. Using this novel method, the nanorods were synthesised at several different pH values which were found to greatly affect both the rate at which the nanorods form and their physical dimensions. The concentrations of acetylacetone and silver nitrate used relative to the gold salt were found to alter the aspect ratio of the nanorods formed. Rods with an average length of 42 nm and an aspect ratio of 4.6 can be easily and reproducibly formed at pH 10 using this method. Nanorods formed under optimum conditions were investigated using TEM.


Gold Nanorod β-Diketone Synthesis Wet chemistry Colloids 

Supplementary material

11051_2008_9564_MOESM1_ESM.pdf (65 kb)
MOESM1 (PDF 65 kb)


  1. Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416. doi:10.1002/adma.200390095 CrossRefGoogle Scholar
  2. Chen HM, Liu RS (2006) Controlling length and monitoring growth of gold nanorods. J Chin Chem Soc (Taipei) 53:1343–1348Google Scholar
  3. Foss CA, Hornyak CL, Stocked JA, Martin CR (1992) Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J Phys Chem 96:1491–1499Google Scholar
  4. Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi:10.1021/ja057254a PubMedCrossRefGoogle Scholar
  5. Imura K, Nagahara T, Okamoto H (2005) Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J Phys Chem B 109:13214–13220. doi:10.1021/jp051631o PubMedCrossRefGoogle Scholar
  6. Jana NR (2005) Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles. Small 1:875–882. doi:10.1002/smll.200500014 PubMedCrossRefGoogle Scholar
  7. Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067. doi:10.1021/jp0107964 CrossRefGoogle Scholar
  8. Kundu S, Pal A, Ghosh SK, Nath S, Panigrahi S, Praharaj S, Basu S, Pal T (2005) Shape-controlled synthesis of gold nanoparticles from gold(III)-chelates of β-diketones. J Nanopart Res 7:641–650. doi:10.1007/s11051-005-3475-z CrossRefGoogle Scholar
  9. Li CZ, Male KB, Hrapovic S, Luong JHT (2005) Fluorescence properties of gold nanorods and their application for DNA biosensing. Chem Commun (Camb) 3924–3926. doi:10.1039/b504186d
  10. Liao HW, Hafner JH (2005) Gold nanorod bioconjugates. Chem Mater 17:4636–4641. doi:10.1021/cm050935k CrossRefGoogle Scholar
  11. Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962. doi:10.1021/cm020732l CrossRefGoogle Scholar
  12. Sau TK, Murphy CJ (2004) Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20:6414–6420. doi:10.1021/la049463z PubMedCrossRefGoogle Scholar
  13. Sudeep PK, Joseph STS, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516–6517. doi:10.1021/ja051145e PubMedCrossRefGoogle Scholar
  14. Takahashi H, Niidome Y, Yamada S (2005) Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun (Camb) 2247–2249. doi:10.1039/b500337g
  15. Wang HF, Huff TB, Zweifel DA, He W, Low PS, Wei A, Cheng JX (2005) In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 102:15752–15756. doi:10.1073/pnas.0504892102 PubMedCrossRefADSGoogle Scholar
  16. Yu YY, Chang SS, Lee CL (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664. doi:10.1021/jp971656q CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christopher M. Tollan
    • 1
  • Jon Echeberria
    • 2
  • Rebeca Marcilla
    • 1
  • José A. Pomposo
    • 1
  • David Mecerreyes
    • 1
  1. 1.New Materials DepartmentCIDETEC-Centre for Electrochemical Technologies, Parque Tecnológico de San SebastiánDonostia-San SebastiánSpain
  2. 2.CEIT, Centro de Investigaciones Técnicas de GuipuzcoaDonostia-San SebastiánSpain

Personalised recommendations