Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 1011–1016 | Cite as

Facile graft polystyrene onto multi-walled carbon nanotubes via in situ thermo-induced radical polymerization

Brief Communication


A facile procedure was developed for the grafting of polystyrene onto the surfaces of multi-walled carbon nanotubes (MWNTs) via the in situ thermo-induced bulk radical polymerization of styrene at the different polymerizing temperatures, in the presence of MWNTs without any initiator added. The grafting products were validated by the dispersibility, TEM, TGA, FT-IR, and Raman analysis. The TGA results also showed the lower polymerizing temperature was propitious to the free radical addition reactions.


Polystyrene Multi-walled carbon nanotubes Radical addition Thermo-induced Bulk polymerization MWCNT Nanomaterial 


  1. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1799PubMedCrossRefGoogle Scholar
  2. Arvray S, Derycke V, Goffman M, Filoramo A, Jost O, Bourgoin JP (2005) Chemical optimization of self-assembled carbon nanotube transistors. Nano Lett 5(3):451–455CrossRefGoogle Scholar
  3. Bahr JL, Tour JM (2001) Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem Mater 13(11):3823–3824CrossRefGoogle Scholar
  4. Baskaran D, Dunlap JR, Mays JM, Bratcher MS (2005) Grafting efficiency of hydroxy-terminated poly(methyl methacrylate) with multiwalled carbon nanotubes. Macromol Rapid Commun 26(6):481–486CrossRefGoogle Scholar
  5. Chen XH, Chen CS, Chen Q, Cheng FQ, Zhang G, Chen ZZ (2002) Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Mater Lett 57(3):734–738CrossRefGoogle Scholar
  6. Choi HJ, Zhang K, Lim JY (2007) Multi-walled carbon nanotube/polystyrene composites prepared by in-situ bulk sonochemical polymerization. J Nanosci Nanotechnol 7(10):3400–3403PubMedCrossRefGoogle Scholar
  7. Dyke CA, Tour JM (2003) Unbundled and highly functionalized carbon nanotubes from aqueous reactions. Nano Lett 3(9):1215–1218CrossRefGoogle Scholar
  8. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584PubMedCrossRefGoogle Scholar
  9. Hemenick CM, Lawson G, Adronov A (2007) Polymer grafting of carbon nanotubes using living free-radical polymerization. Polym Rev 47(2):265–290CrossRefGoogle Scholar
  10. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58CrossRefADSGoogle Scholar
  11. Jun SC, Choi JH, Cha SN, Baik CW, Lee S, Kim HJ, Hone J, Kim JM (2007) Radio-frequency transmission characteristics of a multi-walled carbon nanotube. Nanotechnology 18(25):255701CrossRefADSGoogle Scholar
  12. Kim JM, Han IT, Jin YW, Choi JH, Lee JH, Jung JE, Park YJ, Chung DS, Park SH, Lee HW (2004) The effect of structural change and Ni doping on hydrogen storage properties of carbon nanotubes. JOM 56(11):164Google Scholar
  13. Kim ST, Lim JY, Park BJ, Choi HJ (2007) Dispersion-polymerized carbon nanotube/ poly(methyl methacrylate) composite particles and their electrorheological characteristics. Macromol Chem Phys 208(5):514–519CrossRefGoogle Scholar
  14. Kukovecz A, Kramberger C, Georgakilas V, Prato M, Kuzmany H (2002) A detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur Phys J B 28(2):223–230CrossRefADSGoogle Scholar
  15. Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41(11):2693–2703CrossRefGoogle Scholar
  16. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Shelimo K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280(5367):1253–1256PubMedCrossRefGoogle Scholar
  17. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  18. Odom TW, Huang JL, Kim P, Lieber CM (1998) Atomic structures and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRefGoogle Scholar
  19. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2003) Synthesis and dispersion characteristics of multi-walled carbon nanotube composites with poly(methyl methacrylate) prepared by in-situ bulk polymerization. Macromol Rapid Commun 24(18):1070–1073CrossRefGoogle Scholar
  20. Petrov P, Lou XD, Pagnoulle C, Jerme C, Calberg C, Jerome R (2004) Functionalization of multi-walled carbon nanotubes by electrografting of polyacrylonitrile. Macromol Rapid Commun 25(10):987–990CrossRefGoogle Scholar
  21. Sinha N, Ma JZ, Yeow JT (2006) Carbon nanotube-based sensors. J Nanosci Nanotechnol 6(3):573–590PubMedCrossRefGoogle Scholar
  22. Sun Y, Fu F, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104PubMedCrossRefGoogle Scholar
  23. Sung JH, Kim HS, Jin HJ, Choi HJ, Chin IJ (2004) Nanofibrous membranes prepared by multiwalled carbon nanotube/poly(methyl methacrylate) composites. Macromolecules 37(26):9899–9902CrossRefGoogle Scholar
  24. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106(3):1105–1136PubMedCrossRefGoogle Scholar
  25. Xu HX, Wang XB, Zhang YF, Liu SY (2006) Single-step in situ preparation of polymer-grafted multi-walled carbon nanotube composites under 60Co γ-ray irradiation. Chem Mater 18(13):2929–2934CrossRefGoogle Scholar
  26. Yan YH, Chan-Park MB, Zhou Q, Li CM, Yue CY (2005) Functionalization of carbon nanotubes by argon plasma-assisted ultraviolet grafting. Appl Phys Lett 87(21):213101CrossRefGoogle Scholar
  27. Yang YK, Xie XL, Wu JG, Yang ZF, Wang XT, Mai YW (2006) Multiwalled carbon nanotubes functionalized by hyperbranched poly(urea-urethane)s by a one-pot polycondensation. Macromol Rapid Commun 27(19):1695–1701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Applied Organic Chemistry, Institute of Polymer Science and Engineering, College of Chemistry and Chemical EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations