Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 981–988 | Cite as

Detection, separation, and quantification of unlabeled silica nanoparticles in biological media using sedimentation field-flow fractionation

  • Soheyl Tadjiki
  • Shoeleh Assemi
  • Cassandra E. Deering
  • John M. Veranth
  • Jan D. Miller
Technology and Applications

Abstract

A rapid, high-resolution methodology for characterization, separation, and quantification of unlabeled inorganic nanoparticles extracted from biological media, based on sedimentation field-flow fractionation and light scattering detection is presented. Silica nanoparticles were added to either human endothelial cell lysate or rat lung tissue homogenate and incubated. The nanoparticles were extracted by acid digestion and then separated and characterized by sedimentation field-flow fractionation. Fractions collected at the peak maxima were analyzed by transmission electron microscopy (TEM) to verify the size and shape of the isolated nanoparticles. Using the linear relationship between the particle number and the area under the fractogram, the recoveries of particles from the tissue homogenate and cell lysate were calculated as 25% and 79%, respectively. The presented methodology facilitates detection, separation, size characterization, and quantification of inorganic nanoparticles in biological samples, within one experimental run.

Keywords

Sedimentation field-flow fractionation Nanoparticle characterization and quantification Silica (SiO2Rat lung tissue homogenate Human endothelial cell lysate Transmission electron microscopy Nanocomposites 

References

  1. Barman BN, Giddings JC (1992) Kinetics and properties of colloidal latex aggregates measured by sedimentation field-flow fractionation. Langmuir 8:51–58. doi:10.1021/la00037a012 CrossRefGoogle Scholar
  2. Beckett R, Zhang J, Giddings JC (1987) Determination of molecular weight distributions of fulvic and humic acids, using flow field-flow fractionation. Environ Sci Technol 21:289–295. doi:10.1021/es00157a010 CrossRefGoogle Scholar
  3. Borm P, Klaessig FC, Landry TD, Moudgil B, Pauluhn J, Thomas K, Trottier R, Wood S (2006) Research strategies for safety evaluation of nanomaterials, part V: role of dissolution in biological fate and effects of nanoscale particles. Toxicol Sci 90:23–32. doi:10.1093/toxsci/kfj084 PubMedCrossRefGoogle Scholar
  4. Brant J, Lecoanet H, Weisner M (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. doi:10.1007/s11051-005-4884-8 CrossRefGoogle Scholar
  5. Caldwell KD, Karaiskakis G, Myers MN, Giddings JC (1981) Characterization of T4D virus by sedimentation field-flow fractionation. J Pharm Sci 70:1350–1353. doi:10.1002/jps.2600701216 PubMedCrossRefGoogle Scholar
  6. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B (2007) Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 82:151–157. doi:10.1007/s00204-007-0253-y PubMedCrossRefGoogle Scholar
  7. Giddings JC (1988) Field-flow fractionation. Chem Eng News 66:34–45Google Scholar
  8. Giddings JC, Caldwell KD (1989) Field-flow fractionation. In: Rositer BW, Hamilon JF (eds) Physical methods of chemistry. Wiley, New York, pp 867–938Google Scholar
  9. Giddings JC, Karaiskakis G, Caldwell KD (1981) Density and particle size of colloidal materials measured by carrier density variations in sedimentation field-flow fractionation. Sep Sci Technol 16:607–618. doi:10.1080/01496398108058119 CrossRefGoogle Scholar
  10. Giddings JC, Ratanathanawongs SK, Moon MH (1991) Field-flow fractionation: a versatile technology for particle characterization in the size range 0.001 to 100 micrometers. KONA Powder Part 9:200–217Google Scholar
  11. Giddings JC, Ratanathanawongs SK, Barman BN, Moon MH, Liu G, Tjelta BI, Hansen ME (1994) Characterization of colloidal and particulate silica by field-flow fractionation. In: Bergna HE (ed) Colloid chemistry of silica, vol 234. ACS, Washington DC, pp 309–340Google Scholar
  12. Kaszuba M, McKnight D, Connah MT, McNeil-Watson FK, Nobbmann U (2008) Measuring sub nanometer sizes using dynamic light scattering. J Nanopart Res 10:823–829. doi:10.1007/s11051-007-9317-4 CrossRefGoogle Scholar
  13. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee J, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347. doi:10.1093/toxsci/kfj027 PubMedCrossRefGoogle Scholar
  14. Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH (2008) Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 50:1–6. doi:10.1539/joh.50.1 PubMedCrossRefGoogle Scholar
  15. Lau SH, van Lenthe GH, Peele A, Chang H, Cui H, Feser M, Wenbing Y (2008) Rapid non-invasive tomography of biological samples across length scales using a novel lab-based CT with resolution from mm to 30 nm. ACMM-20 & IUMAS-IV proceedings, Perth, Australia, pp 14–15Google Scholar
  16. Lin CL, Miller JD (1993) The development of a PC image-based on-line particle size analyzer. Miner Metall Proc 2:29–35Google Scholar
  17. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon Y, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280:1253–1256. doi:10.1126/science.280.5367.1253 PubMedCrossRefGoogle Scholar
  18. Moon MH, Giddings JC (1992) Extension of sedimentation/steric field-flow fractionation into submicron range: size analysis of 0.2–15 μm metal particles. Anal Chem 64:3029–3037. doi:10.1021/ac00047a027 CrossRefGoogle Scholar
  19. Mühlfeld C, Rothen-Rutishauser B, Vanhecke D, Blank F, Gehr P, Ochs M (2007) Visualization and quantitative analysis of nanoparticles in the respiratory tract by transmission electron microscopy. Part Fibre Toxicol 4:11. doi:10.1186/1743-8977-4-11 PubMedCrossRefGoogle Scholar
  20. Myers MN (1997) Overview of field-flow fractionation. J Microcolumn Sep 9:151–162. doi:10.1002/(SICI)1520-667X(1997)9:3<151::AID-MCS3>3.0.CO;2-0CrossRefGoogle Scholar
  21. Nemmar A, Hoet PHM, Vanquickenborne B, Dinsdale D, Thomeer M, Hoylaerts MF, Vanbilloen H, Mortelmans L, Nemery B (2002) Passage of inhaled particles into the blood circulation in humans. Circulation 105:411–414. doi:10.1161/hc0402.104118 PubMedCrossRefGoogle Scholar
  22. Oberdörster G (2000) Toxicology of ultrafine particles: in vivo studies. Philos Trans R Soc Lond A 358:2719–2740. doi:10.1098/rsta.2000.0680 CrossRefADSGoogle Scholar
  23. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8 PubMedCrossRefGoogle Scholar
  24. Ratanathanawongs Williams SK, Raner GM, Ellis WR Jr, Giddings JC (1997) Separation of protein inclusion bodies from Escherichia coli lysates using sedimentation field-flow fractionation. J Microcolumn Sep 9:233–239. doi:10.1002/(SICI)1520-667X(1997)9:3<233::AID-MCS12>3.0.CO;2-9CrossRefGoogle Scholar
  25. Rothen-Rutishauser B, Mühlfeld C, Blank F, Musso C, Gehr P (2007) Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 4:9. doi:10.1186/1743-8977-4-9 PubMedCrossRefGoogle Scholar
  26. Taylor ET, Garbarino JR (1992) Inductively coupled plasma-mass spectrometry as an element-specific detector for field-flow fractionation particle separation. Anal Chem 64:2036–2041. doi:10.1021/ac00042a005 CrossRefGoogle Scholar
  27. Veranth JM, Kaser EG, Veranth MM, Koch M, Yost GS (2007) Cytokine responses of human lung cells (BEAS-2B) treated with oxide micron-sized and nanoparticles compared to soil dusts. Part Fibre Toxicol 4:2PubMedCrossRefGoogle Scholar
  28. von der Kammer F, Baborowski M, Tadjiki S, von Tümpling W Jr (2004) Colloidal particles in sediment pore waters: particle size distributions and associated element size distribution in anoxic and re-oxidized samples, obtained by FFF-ICP-MS coupling. Acta Hydrochim Hydrobiol 31:400–410CrossRefGoogle Scholar
  29. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary bioassay studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 95(1):270–280PubMedCrossRefGoogle Scholar
  30. Williams PS, Giddings JC, Beckett R (1987) Fractionating power in sedimentation field-flow fractionation with linear and parabolic field decay programming. J Liq Chromatogr 10:1961–1998CrossRefGoogle Scholar
  31. Yonker CR, Caldwell KD, Giddings JC, van Etten JL (1985) Physical characterization of PBCV virus by sedimentation FFF. J Virol Methods 11:145–160PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Soheyl Tadjiki
    • 1
  • Shoeleh Assemi
    • 2
  • Cassandra E. Deering
    • 3
  • John M. Veranth
    • 3
  • Jan D. Miller
    • 2
  1. 1.Postnova Analytics USASalt Lake CityUSA
  2. 2.Department of Metallurgical Engineering, College of Mines and Earth SciencesUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Pharmacology and ToxicologyUniversity of UtahSalt Lake CityUSA

Personalised recommendations