Solvothermal synthesis of nanocrystalline zinc oxide doped with Mn2+, Ni2+, Co2+ and Cr3+ ions

  • Witold Lojkowski
  • Aharon Gedanken
  • Ewa Grzanka
  • Agnieszka Opalinska
  • Tomasz Strachowski
  • Roman Pielaszek
  • Anita Tomaszewska-Grzeda
  • Sergyi Yatsunenko
  • Marek Godlewski
  • Hubert Matysiak
  • Krzysztof J. Kurzydłowski
Research Paper


ZnO nanopowders doped with Mn2+, Ni2+, Co2+ and Cr3+ ions have been synthesised for the first time using a solvothermal reaction with microwave heating. The nanopowders were produced from a solution of zinc acetate and manganese (II), chromium (III), nickel (II) and cobalt (II) acetates, using ethylene glycol as a solvent. The content of Ni2+, Co2+ and Cr3+ ions in the solution and in the solid phase were close to each other up to 5 mol%. The doping level of Mn2+ ions in the solid is about 50% of that in the solution. No phases or compounds other than ZnO were detected by X-ray diffraction with Mn2+, Co2+ and Ni2+ doping. With Cr3+ ions a small amount of chromium oxide was found. None of the powders displayed any luminescence after doping. The Mn2+-doped powder displayed a paramagnetic behaviour. ESR and magnetisation investigations have revealed that no clustering of Mn2+ ions occurred up to a doping level of 3.9 mol%. The average grain size of powders doped with Ni2+, Cr3+, Co2+ and Mn2+ for a 10 mol% ion content in the solution was about 20 nm and the grain size dispersion 30%. With increasing dopant content the grain size decreased. It appears that the solvothermal process employed allows relatively high doping levels of the transition metal ions to be achieved without any dopant clustering or oxide precipitation.


Microwave reactor Zinc oxide Mn Co Cr Ni ZnO nanopowder Solvothermal reaction Paramagnetism ESR 


  1. Bates CH, White WR, Row JR (1966) The solubility of transition metal in zinc oxide and the reflectance spectra of Mn+2 and Fe+3 in tetrahedral fields. J Inorg Nucl Chem 28:397–405. doi:10.1016/0022-1902(66)80318-4 CrossRefGoogle Scholar
  2. Blythe HJ, Ibrahim RM, Gehring GA, Neal JR, Fox AM (2004) Mechanical alloying: a route to room-temperature ferromagnetism in bulk Zn1−xMnxO. J Magn Magn Mater 283:117–127. doi:10.1016/j.jmmm.2004.08.008 CrossRefADSGoogle Scholar
  3. Bondioli F, Ferrari AM, Leonelli C, Siligardi C, Pellcani GC (2001) Microwave–hydrothermal synthesis of nanocrystalline Pr-doped zirconia powders at pressure up to 8 MPa. J Am Ceram Soc 84:193–196CrossRefGoogle Scholar
  4. Borges RP, Pinto JV, da Silva RC, Goncalves AP, Cruz MM, Godhino M (2007) Ferromagnetism in ZnO doped with Co by ion implantation. J Magn Magn Mater 316:e191–e194. doi:10.1016/j.jmmm.2007.02.109 CrossRefADSGoogle Scholar
  5. Bradford MCJ, Konduru MV, Fuentes DX (2003) Preparation, characterization and application of Cr2O3/ZnO catalysts for methanol synthesis. Fuel Process Technol 83:11–25. doi:10.1016/S0378-3820(03)00080-8 CrossRefGoogle Scholar
  6. Castel V, Youssef JB, Brosseau C (2007) Broadband ferromagnetic resonance measurements in Ni/ZnO and Niy-Fe2O3 nanocomposites. J Nanomater (Hindawi Publishing Corporation) 27437:16Google Scholar
  7. Chien CH, Chioub SH, Guoaand GY, Yaoc YD (2004) Electronic structure and magnetic moments of 3d transition metal-doped ZnO. J Magn Magn Mater 282:275–278CrossRefADSGoogle Scholar
  8. Chikoidze E, Daumont Y, von Bardleben HJ, Gleize J, Gorochov O (2007) Effect of oxygen annealing on the Mn2+ properties in ZnMnO films. J Magn Magn Mater 316:e181–e184. doi:10.1016/j.jmmm.2007.02.083 CrossRefGoogle Scholar
  9. Cushing BL, Kolesnichenko V, O’Connor CJ (2004) Recent advances in the liquid-phase synthesis of inorganic nanoparticles. Chem Rev 104:3893–3946. doi:10.1021/cr030027b CrossRefPubMedGoogle Scholar
  10. Deka S, Joy PA (2007) Synthesis and magnetic properties of Mn doped ZnO nanowires. Solid State Commun 142:190–194. doi:10.1016/j.ssc.2007.02.017 CrossRefADSGoogle Scholar
  11. Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D (2000) Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287:1019–1022. doi:10.1126/science.287.5455.1019 CrossRefPubMedADSGoogle Scholar
  12. Ekambaram S (2005) Combustion synthesis and characterisation of new class of ZnO-based ceramic pigments. J Alloy Compd 390:L4–L6. doi:10.1016/j.jallcom.2004.08.055 CrossRefGoogle Scholar
  13. Furdyna JK (1982) Diluted magnetic semiconductors: an interface of semiconductors physics and magnetism. J Appl Phys 53:7637. doi:10.1063/1.330137 CrossRefADSGoogle Scholar
  14. Ghosh M, Seshadri R, Rao CNR (2004) A solvothermal route to ZnO and Mn-doped ZnO nanoparticles using the Cupferron complex as the precursor. J Nanosci Nanotechnol 1–2:136–140. doi:10.1166/jnn.2004.021 CrossRefGoogle Scholar
  15. Godlewski M, Yatsunenko S, Ivanov VY (2006) Recombination processes in nanoparticles of II-Mn-IV compounds—magnetic resonance study. Isr J Chem 46:413–421. doi:10.1560/IJC_46_4_413 CrossRefGoogle Scholar
  16. Grzanka E, Stelmakh S, Zhao Y, Palosz B, Palosz W (2004) Examination of the atomic pair distribution function (PDF) of SiC nanocrystals by in situ high pressure diffraction. J Alloy Compd 382:133–137. doi:10.1016/j.jallcom.2004.04.142 CrossRefGoogle Scholar
  17. Huang JR, Xiong ZX, Fang C, Feng BL (2003) Hydrothermal synthesis of Ba2Ti9O20 nanopowder for microwave ceramics. Mater Sci Eng B99:226–229. doi:10.1016/S0921-5107(02)00541-X CrossRefGoogle Scholar
  18. Jayakumar OD, Gopalakrishnan IK, Kulshrestha SK (2006) On the room temperature ferromagnetism of Mn-doped ZnO. Physics B 381:194–198CrossRefADSGoogle Scholar
  19. Jayakumar OD, Gopalkrishnan IK, Sudakar C, Kadam RM, Kulshreshtha SK (2007) Significant enhancement of room temperature ferromagnetism in surfactant coated polycrystalline Mn doped ZnO particles. J Alloy Compd 438:258–262. doi:10.1016/j.jallcom.2006.08.030 CrossRefGoogle Scholar
  20. Joseph DP, Senthil Kumar G, Venkateswaran C (2005) Structural, magnetic and optical studies of Zn0.95Mn0.05O DMS. Mater Lett 59:2720–2724. doi:10.1016/j.matlet.2005.04.028 CrossRefGoogle Scholar
  21. Joseph DP, Naveenkumar S, Sivakumar N, Venkatesvaran C (2006) Synthesis of Zn0.95Cr0.05O DMS by co-precipitation and ceramic methods: structural and magnetization studies. Mater Chem Phys 97:188–192. doi:10.1016/j.matchemphys.2005.08.005 CrossRefGoogle Scholar
  22. Jung KY, Kang YC, Park SB (1997) Photodegradation of trichloroethylene using nanometre-sized ZnO particles prepared by spray pyrolysis. J Mater Sci Lett 16:1848–1849. doi:10.1023/A:1018589206858 CrossRefGoogle Scholar
  23. Komarneni S, Roy R, Li QH (1992) Microwave–hydrothermal synthesis of ceramic powders. Mater Res Bull 27:1393–1405. doi:10.1016/0025-5408(92)90004-J CrossRefGoogle Scholar
  24. Komarneni S, Bruno M, Mariani E (2000) Synthesis of ZnO with and without microwaves. Mater Res Bull 35:1843–1847. doi:10.1016/S0025-5408(00)00385-8 CrossRefGoogle Scholar
  25. Kurzydłowski KJ (1995) Ralph B The quantitative description of the microstructure of materials. CRC Press, New YorkGoogle Scholar
  26. Leonelli C, Lojkowski W (2007) Main development directions in the application of microwave irradiation to the synthesis of nanopowders. Chem Today 25:34–38Google Scholar
  27. Li D, Haneda H (2003) Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere 51:129–137. doi:10.1016/S0045-6535(02)00787-7 CrossRefPubMedGoogle Scholar
  28. Li H, Sang JP, Mei F, Ren F, Zhang L, Liu C (2007) Observation of ferromagnetism at room temperature for Cr+ ions imolanted ZnO thin films. Appl Surf Sci 253:8524–8529. doi:10.1016/j.apsusc.2007.04.028 CrossRefADSGoogle Scholar
  29. Liu M, Kitai AH, Mascher P (1992) Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese. J Lumin 54:35–42. doi:10.1016/0022-2313(92)90047-D CrossRefGoogle Scholar
  30. Liu S, Takahashi K, Ueamtsu K, Ayabe M (2004) Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component. Appl Catal A 277:265–270. doi:10.1016/j.apcata.2004.09.019 CrossRefGoogle Scholar
  31. Lojkowski W, Turan R, Proykova A, Morrison M (eds) (2006) Nanometrology report,
  32. Mingos DMP (1994) The applications of microwaves in chemistry. Res Chem Intermed 20:85–91. doi:10.1163/156856794X00090 CrossRefGoogle Scholar
  33. Mingos DMP, Baghurst DR (1991) Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem Soc Rev 20:1–47. doi:10.1039/cs9912000001 CrossRefGoogle Scholar
  34. Nolze G, Kraus W (1998) PowderCell 2.0 for windows. Powder Diffr 13:256–259Google Scholar
  35. Ohta M, Ikeda Y, Igarashi A (2004) Preparation and characterization of Pt/ZnO-Cr2O3 catalyst for low-temperature dehydrogenation of isobutane. Appl Catal Gen 258:153–158. doi:10.1016/j.apcata.2003.08.021 CrossRefGoogle Scholar
  36. Opalinska A, Leonelli C, Lojkowski W, Pielaszek R, Grzanka E, Chudoba T, Matysiak H, Wejrzanowski T, Kurzydlowski KJ (2006) Effect of pressure on synthesis of Pr-doped zirconia powders produced by microwave-driven hydrothermal reaction. J Nanomater ID98769:1–8. doi:10.1155/JNM/2006/98769 CrossRefGoogle Scholar
  37. Palchik O, Zhu Z, Gedanken A (2000) Microwave assisted preparation of binary oxide nanoparticles. J Mater Chem 10:1251–1254. doi:10.1039/a908795h CrossRefGoogle Scholar
  38. Palchik O, Gedanken A, Palchik V, Slifkin MA, Weiss AM (2002) Microwave-assisted preparation, morphological, and photoacoustic studies of the Na4SnSe4, K4Sn2Se6 and K4Sn3Se8, Zintl molecular Sn-Se oligomers. J Solid State Chem 165:125–130. doi:10.1006/jssc.2002.9513 CrossRefADSGoogle Scholar
  39. Palosz B, Pantea C, Grzanka E, Stelmach S, Proffen T, Zerda TW, Palosz W (2006) Investigation of relaxation of nanodiamond surface in real and reciprocal spaces. Diam Relat Mater 15:1813–1817. doi:10.1016/j.diamond.2006.09.001 CrossRefGoogle Scholar
  40. Palosz B, Stelmakh S, Grzanka E, Gierlotka S, Palosz W (2007) Application of the apparent lattice parameter to determination of the core-shell structure of nanocrystals. Z Kristallography 222:580–594CrossRefGoogle Scholar
  41. Pepe F, Schiavello M, Ferraris G (1975) Characterization of CoO-ZnO. Solid solution. J Solid State Chem 12:63–68. doi:10.1016/0022-4596(75)90178-4 CrossRefADSGoogle Scholar
  42. Perreux L, Loupy A (2001) A tentative rationalization of microwave effects in organic synthesis according to the reaction medium and mechanistic considerations. Tetrahedron 57:9199–9223. doi:10.1016/S0040-4020(01)00905-X CrossRefGoogle Scholar
  43. Sato K, Katayama-Yoshida H (2001) Ferromagnetism in a transition metal atom doped ZnO. Physica E 10:251–255. doi:10.1016/S1386-9477(01)00093-5 CrossRefADSGoogle Scholar
  44. Sharma P, Gupta A, Owens FJ, Inoue A, Rao KV (2004) Room temperature spintronic material—Mn-doped ZnO revisited. J Magn Magn Mater 282:115–121CrossRefADSGoogle Scholar
  45. Somiya S, Akiba T (1999) Hydrothermal zirconia powders: a bibliography. J Eur Ceram Soc 19:81–87. doi:10.1016/S0955-2219(98)00110-1 CrossRefGoogle Scholar
  46. Strachowski T, Grzanka E, Lojkowski W, Godlewski M, Yatsuenenko S, Presz A, Matysiak H, Piticescu RR, Monty CJ (2006) Morphology and luminescence properties of zinc oxide nanopowders doped with aluminium ions obtained by hydrothermal and vapor condensation methods. J Appl Phys 89:242102Google Scholar
  47. Tomaszewska-Grzeda A, Opalinska A, Grzanka E, Lojkowski W, Gedanken A, Godlewski M, Yatsunenko S, Osinin V, Story T (2006) Magnetic properties of ZnMnO nanopowders solvothermally grown at low temperature from zinc and manganese acetate. Appl Phys Lett 89:242102. doi:10.1063/1.2404599 CrossRefADSGoogle Scholar
  48. Venkaprasad Bhat S, Deepak FL (2005) Tuning the band gap of ZnO by substitution with Mn2+, Co2+ and Ni2+. Solid State Commun 135:345–347. doi:10.1016/j.ssc.2005.05.051 CrossRefADSGoogle Scholar
  49. Verbiest P, Vermang B (2007) Reactivity of nano zinc metal powder in azo-couplings and in the manufacturing of organozinc halides. Chem Today 25(4):34–38Google Scholar
  50. Wakamo T, Fuijmura N, Morinaga Y, Abe N, Ashida A, Ito T (2001) Magnetic and magneto-transport properties of ZnO:Ni films. Physica E 16:260–264. doi:10.1016/S1386-9477(01)00095-9 CrossRefADSGoogle Scholar
  51. Wejrzanowski T, Kurzydlowski KJ (2003) Stereology of grains in nanocrystals. Solid State Phenom 94:221–228CrossRefGoogle Scholar
  52. Wejrzanowski T, Pielaszek R, Opalińska A, Matysiak H, Lojkowski W, Kurzydlowski KJ (2006) Quantitative methods for nanopowders characterization. Appl Surf Sci 253:204–208. doi:10.1016/j.apsusc.2006.05.089 CrossRefADSGoogle Scholar
  53. Whittaker AG, Mingos DMP (1994) The application of microwave heating to chemical synthesis. J Microw Power Electromagn Energy 29:195–220Google Scholar
  54. Wojcik A, Kopalko K, Godlewski M, Guziewicz E, Jankiela R, Minikayev R, Paszkowicz W (2006) Magnetic properties of ZnMnO films grown at low temperature by atomic layer deposition. Appl Phys Lett 89(051907):3. doi:10.1063/1.2245209 Google Scholar
  55. Xu Q, Hartman L, Schmidt H, Hochmut H, Lorenz M, Schmidt-Grund R, Spemann D, Rahm A, Grundman M (2006) Magnetoresistance in pulsed laser deposited 3d transition metal doped ZnO films. Thin Solid Films 515:2549–2554. doi:10.1016/j.tsf.2006.04.024 CrossRefADSGoogle Scholar
  56. Yang Y, Ma J, Wu F (2006) Production of hydrogen by steam reforming of ethanol over a Ni/ZnO catalyst. Int J Hydrogen Energy 31:877–882. doi:10.1016/j.ijhydene.2005.06.029 CrossRefGoogle Scholar
  57. Yatsunenko S, Świątek K, Godlewski M, Fröba M, Klar PJ, Heimbrodt W (2008) Electron spin resonance investigations of ZnMnS nanoparticles. Opt Mater 30:753–755CrossRefADSGoogle Scholar
  58. Zachariasen WH (1945) Theory of X-ray diffraction In crystals. Wiley, New YorkGoogle Scholar
  59. Zhou Z, Katoa K, Komakia T, Yoshinoa M, Yukawaa H, Moronnagad M, Moritab K (2004) Effects of dopants and hydrogen on the electrical conductivity of ZnO. J Eur Ceram Soc 24:139. doi:10.1016/S0955-2219(03)00336-4 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Witold Lojkowski
    • 1
  • Aharon Gedanken
    • 2
  • Ewa Grzanka
    • 1
  • Agnieszka Opalinska
    • 1
  • Tomasz Strachowski
    • 1
  • Roman Pielaszek
    • 1
  • Anita Tomaszewska-Grzeda
    • 1
  • Sergyi Yatsunenko
    • 3
  • Marek Godlewski
    • 3
    • 4
  • Hubert Matysiak
    • 5
  • Krzysztof J. Kurzydłowski
    • 5
  1. 1.Institute of High Pressure Physics, Polish Academy of Sciences “Unipress”WarsawPoland
  2. 2.Department of ChemistryBar-Ilan UniversityRamat-GanIsrael
  3. 3.Institute of Physics, Polish Academy of SciencesWarsawPoland
  4. 4.Department Mathematics and Natural Sciences College of ScienceCardinal S. Wyszynski UniversityWarsawPoland
  5. 5.Faculty of Materials Science and EngineeringWarsaw University of TechnologyWarsawPoland

Personalised recommendations