As(V) remediation using electrochemically synthesized maghemite nanoparticles

Research Paper

Abstract

Maghemite nanoparticles were electrochemically synthesized from environmentally benign solutions in ambient conditions and utilized to remediate As(V) from aqueous solution. The average size and surface area of the maghemite nanoparticles were controlled to be 11–23 nm and 41–49 m2 g−1, respectively, by adjusting applied current density. The point of zero charge and crystallinity were independent of size. The effect of size and environmental conditions (i.e., maghemite nanoparticles content, contact time, and solution pH) on the adsorption of As(V) were systematically investigated. Similar to As(V) remediation using zero valent iron nanoparticles (NZVI), the kinetics of adsorption were best described by the pseudo first order model where the remediation is limited by the mass transfer of As(V) to adsorption sites of maghemite. The adsorption was spontaneous and endothermic which fitted with the Langmuir and Freundlich isotherms. The results observed in batch study indicate that maghemite nanoparticles were suitable adsorbent for remediating As(V) concentration to the limit (10 μg l−1) recommended by the World Health Organization (WHO).

Keywords

Maghemite Adsorption As(V) Nanoparticles Electrochemical synthesis Langmuir and Freundlich isotherms Environment EHS 

References

  1. Ajmal M, Hussain Khan A, Ahmad S, Ahmad A (1998) Role of sawdust in the removal of copper(II) from industrial wastes. Water Res 32:3085–3091. doi:10.1016/S0043-1354(98)00067-0 CrossRefGoogle Scholar
  2. Appelo CAJ, Van Der Weiden MJJ, Tournassat C, Charlet L (2002) Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environ Sci Technol 36:3096–3103. doi:10.1021/es010130n CrossRefPubMedGoogle Scholar
  3. Balasubramanian N, Madhavan K (2001) Arsenic removal from industrial effluent through electrocoagulation. Chem Eng Technol 24:519–521. doi:10.1002/1521-4125(200105)24:5<519::AID-CEAT519>3.0.CO;2-PCrossRefGoogle Scholar
  4. Bissen M, Frimmel FH (2003) Arsenic—a review. Part II: oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31:97–107. doi:10.1002/aheh.200300485 CrossRefGoogle Scholar
  5. Bowell RJ (1994) Sorption of arsenic by iron oxides and oxyhydroxides in soils. Appl Geochem 9:279–286. doi:10.1016/0883-2927(94)90038-8 CrossRefGoogle Scholar
  6. Brandhuber P, Amy G (1998) Alternative methods for membrane filtration of arsenic from drinking water. Desalination 117:1–10. doi:10.1016/S0011-9164(98)00061-7 CrossRefGoogle Scholar
  7. Chakravarty S, Dureja V, Bhattacharyya G, Maity S, Bhattacharjee S (2002) Removal of arsenic from groundwater using low cost ferruginous manganese ore. Water Res 36:625–632. doi:10.1016/S0043-1354(01)00234-2 CrossRefPubMedGoogle Scholar
  8. Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. doi:10.1021/es030309t CrossRefPubMedGoogle Scholar
  9. Fauconnier N, Pons JN, Roger J, Bee A (1997) Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J Colloid Interface Sci 194:427–433. doi:10.1006/jcis.1997.5125 CrossRefPubMedGoogle Scholar
  10. Garcell L, Morales MP, Andres-Verges M, Tartaj P, Serna CJ (1998) Interfacial and rheological characteristics of maghemite aqueous suspensions. J Colloid Interface Sci 205:470–475. doi:10.1006/jcis.1998.5654 CrossRefPubMedGoogle Scholar
  11. Gimenez J, Martinez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580. doi:10.1016/j.jhazmat.2006.07.020 CrossRefPubMedGoogle Scholar
  12. Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216. doi:10.1006/jcis.2000.7295 CrossRefPubMedGoogle Scholar
  13. Grossl PR, Sparks DL (1995) Evaluation of contaminant ion adsorption/desorption on goethite using pressure jump relaxation kinetics. Geoderma 67:87–101. doi:10.1016/0016-7061(95)00023-H CrossRefGoogle Scholar
  14. Hu J, Chen G, Lo IMC (2006) Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: performance and mechanisms. J Environ Eng 132:709–715. doi:10.1061/(ASCE)0733-9372(2006)132:7(709) CrossRefGoogle Scholar
  15. Jeong Y, Maohong F, Van Leeuwen J, Belczyk JF (2007) Effect of competing solutes on arsenic(V) adsorption using iron and aluminum oxides. J Environ Sci (China) 19:910–919. doi:10.1016/S1001-0742(07)60151-X Google Scholar
  16. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. doi:10.1021/es048991u CrossRefPubMedGoogle Scholar
  17. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent Iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. doi:10.1021/es0520924 CrossRefPubMedGoogle Scholar
  18. Korngold E, Belayev N, Aronov L (2001) Removal of arsenic from drinking water by anion exchangers. Desalination 141:81–84. doi:10.1016/S0011-9164(01)00391-5 CrossRefGoogle Scholar
  19. Kundu S, Gupta AK (2006) Investigations on the adsorption efficiency of iron oxide coated cement (IOCC) towards As(V)-kinetics, equilibrium and thermodynamic studies. Colloids Surf A Physicochem Eng Asp 273:121–128. doi:10.1016/j.colsurfa.2005.08.014 CrossRefGoogle Scholar
  20. Lien HL, Zhang W (1999) Transformation of chlorinated methanes by nanoscale iron particles. J Environ Eng 125:1042–1047. doi:10.1061/(ASCE)0733-9372(1999)125:11(1042) CrossRefGoogle Scholar
  21. Matis KA, Zouboulis AI, Malamas FB, Ramos Afonso MD, Hudson MJ (1997) Flotation removal of As(V) onto goethite. Environ Pollut 97:239–245. doi:10.1016/S0269-7491(97)00091-2 CrossRefPubMedGoogle Scholar
  22. McKay G, Blair HS, Gardner JR (1982) Adsorption of dyes on chitin. I. Equilibrium studies. J Appl Polym Sci 27:3043–3057. doi:10.1002/app.1982.070270827 CrossRefGoogle Scholar
  23. Park H, Ayala P, Deshusses MA, Mulchandani A, Choi H, Myung NV (2008) Electrodeposition of maghemite (γ-Fe2O3) nanoparticles. Chem Eng J 139:208–212. doi:10.1016/j.cej.2007.10.025 CrossRefGoogle Scholar
  24. Pierce ML, Moore CB (1980) Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous solution. Environ Sci Technol 14:214–216. doi:10.1021/es60162a011 CrossRefGoogle Scholar
  25. Pierce ML, Moore CB (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res 16:1247–1253. doi:10.1016/0043-1354(82)90143-9 CrossRefGoogle Scholar
  26. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent Iron. Environ Sci Technol 34:2564–2569. doi:10.1021/es9911420 CrossRefGoogle Scholar
  27. Raven KP, Jain A, Loeppert RH (1998) Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ Sci Technol 32:344–349. doi:10.1021/es970421p CrossRefGoogle Scholar
  28. Singh DB, Prasad G, Rupainwar DC (1996) Adsorption technique for the treatment of As(V)-rich effluents. Colloids Surf A Physicochem Eng Asp 111:49–56. doi:10.1016/0927-7757(95)03468-4 CrossRefGoogle Scholar
  29. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568. doi:10.1016/S0883-2927(02)00018-5 CrossRefGoogle Scholar
  30. Uheida A, Salazar-Alvarez G, Bjorkman E, Yu Z, Muhammed M (2006) Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution. J Colloid Interface Sci 298:501–507. doi:10.1016/j.jcis.2005.12.057 CrossRefPubMedGoogle Scholar
  31. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156. doi:10.1021/es970039c CrossRefGoogle Scholar
  32. WHO (1993) Guidelines for drinking-water quality vol 1: Recommendations, 2nd ed. WHO, GenevaGoogle Scholar
  33. Yean S, Cong L, Yavuz CT, Mayo JT, Yu WW, Kan AT, Colvin VL, Tomson MB (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res 20:3255–3264. doi:10.1557/jmr.2005.0403 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Environmental Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuSouth Korea
  2. 2.Department of Chemical and Environmental Engineering and Center for Nanoscale Science and EngineeringUniversity of California-RiversideRiversideUSA
  3. 3.Nuclear Engineering and Technology Institute (NETEC), Korea Hydro and Nuclear Power Co. Ltd. (KHNP)DaejeonSouth Korea

Personalised recommendations