Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles

Research Paper


The effect of NaOH-etching and UVC-irradiation on the mechanical stability of TiO2 nanoparticles on polycarbonate (PC) slides was investigated. TiO2 nanoparticles were found to adhere more strongly on UVC-treated PC than NaOH-etched PC, caused by the increase in the hydroxyl and carboxyl groups on the UVC-treated PC. Although a mechanically strong TiO2 film was developed on UVC-treated PC, the sheet-like wetting effect and antifogging behaviour were only observed with the film coated on NaOH-etched PC. It was also detected that the film coated onto NaOH-etched PC exhibited a more superior performance in degrading methylene blue than that in the UVC-treated PC system. Evidences from the FTIR and AFM analyses indicated that the performance of TiO2 films was strongly depended on the leaching rate of PEG.


TiO2 NaOH-etching Photo-Fries reaction Polycarbonate Functional nanomaterial 


  1. Andrady AL, Fueki K, Torikai A (1989) Spectral sensitivity of polycarbonate to light-induced yellowing. J Appl Polym Sci 42:2105–2107. doi:10.1002/app.1991.070420739 CrossRefGoogle Scholar
  2. Aslan K, Badugu R, Lakowicz JR, Geddes CH (2005) Metal-enhanced fluorescence from plastic substrates. J Fluoresc 15:99–104. doi:10.1007/s10895-005-2515-5 CrossRefPubMedGoogle Scholar
  3. Aslan K, Holley P, Geddes CD (2006) Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates. J Mater Chem 16:2846–2852. doi:10.1039/b604650a CrossRefGoogle Scholar
  4. Briscoe BJ, Galvin KP (1991) The effect of surface fog on the transmittance of light. Sol Energy 46:191–197. doi:10.1016/0038-092X(91)90063-3 CrossRefGoogle Scholar
  5. Cebeci FC, Wu Z, Zhai L, Cohen RE, Rubner MF (2006) Nanoporosity-driven superhydrophilicity: a means to create multifunctional antifogging coatings. Langmuir 22:2856–2862. doi:10.1021/la053182p CrossRefPubMedGoogle Scholar
  6. Claude B, Gonon L, Duchet J, Verney V, Gardette JL (2004) Surface cross-linking of polycarbonate under irradiation at long wavelengths. Polym Degrad Stab 83:237–240. doi:10.1016/S0141-3910(03)00267-2 CrossRefGoogle Scholar
  7. Gan WY, Lam SW, Chiang K, Amal R, Zhao H, Brungs MP (2007) Novel synthesis of TiO2 thin film with non-UV activated super wettability and antifogging behaviour. J Mater Chem 17:952–954. doi:10.1039/b618280a CrossRefGoogle Scholar
  8. Grosu G, L Andrzejewski, Veilleux G, Ross GG (2004) Relation between the size of fog droplets and their contact angles with CR39 surfaces. J Phys D Appl Phys 37:3350–3355. doi:10.1088/0022-3727/37/23/019 CrossRefADSGoogle Scholar
  9. Heymans N, Rossum SV (2002) FTIR investigation of structural modifications during low-temperature ageing of polycarbonate. J Mater Sci 37:4273–4277. doi:10.1023/A:1020636115507 CrossRefGoogle Scholar
  10. Howarter JA, Youngblood JP (2008) Self-cleaning and next generation anti-fog surfaces and coatings. Macromol Rapid Commun 29:455–466. doi:10.1002/marc.200700733 CrossRefGoogle Scholar
  11. Kanazawa T, Ohmori A (2005) Behaviour of TiO2 coating formation on PET plate by plasma spraying and evaluation of coating’s photocatalytic activity. Surf Coat Technol 197:45–50. doi:10.1016/j.surfcoat.2004.09.029 CrossRefGoogle Scholar
  12. Kotani Y, Matsuda A, Kogure T, Tatsumisago M, Minami T (2000) Formation of anatase nanocrystals in sol-gel derived TiO2-SiO2 thin films with hot water treatment. J Sol-Gel Sci Technol 19:585–588CrossRefGoogle Scholar
  13. Kotani Y et al (2001) Effects of addition of poly(ethylene glycol) on the formation of anatase nanocrystals in SiO2-TiO2 gel films with hot water treatment. Chem Mater 13:2144–2149. doi:10.1021/cm001419r CrossRefGoogle Scholar
  14. Latella BA, Triani G, Zhang Z, Short KT, Bartlett JB, Ignat M (2007) Enhanced adhesion of atomic layer deposited titania on polycarbonate substrates. Thin Solid Films 515:3138–3145. doi:10.1016/j.tsf.2006.08.022 CrossRefADSGoogle Scholar
  15. Lee JH, Cho J-S, Koh S-K, Kim D (2004) Improvement of adhesion between plastic substrates and antireflection layers by ion-assisted reaction. Thin Solid Films 449:147–151. doi:10.1016/j.tsf.2003.08.060 CrossRefADSGoogle Scholar
  16. Makphon P, Ratanatongchai W, Chongkum S, Tantayanon S, Supaphol P (2006) Polycarbonate microfilters by nuclear tracking and chemical etching (track-etching) technique. Preparation Characterisation. J Appl Polym Sci 101:982–990CrossRefGoogle Scholar
  17. Matsuda A, Kotani Y, Kogure T, Tatsumisago M, Minami T (2003) Evaluation of photocatalytic activity of transparent anatase nanocrystals-dispersed silica films prepared by the sol-gel process with hot water treatment. J Sol-Gel Sci Technol 26:517–521CrossRefGoogle Scholar
  18. Rivaton A (1995) Recent advances in bisphenol-A polycarbonate photodegradation. Polym Degrad Stab 49:163–179. doi:10.1016/0141-3910(95)00069-X CrossRefGoogle Scholar
  19. Rivaton A, Sallet D, Lemaire J (1983) The photochemistry of bisphenol-A polycarbonate reconsidered. Polym Photochem 3:463–481. doi:10.1016/0144-2880(83)90102-1 CrossRefGoogle Scholar
  20. Schmidt H, Naumann M, Muller TS, Akarsu M (2006) Application of spray techniques for new photocatalytic gradient coatings on plastics. Thin Solid Films 502:132–137. doi:10.1016/j.tsf.2005.07.257 CrossRefADSGoogle Scholar
  21. Takeuchi M, Yamasaki T, Tsujimaru K, Anpo M (2006) Preparation of crystalline TiO2 thin film photocatalysts on polycarbonate substrates by RF-magnetron sputtering deposition method. Chem Lett 35:904–905. doi:10.1246/cl.2006.904 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Functional Nanomaterials, School of Chemical Sciences and EngineeringThe University of New South WalesSydneyAustralia

Personalised recommendations