Journal of Nanoparticle Research

, Volume 11, Issue 8, pp 1957–1969 | Cite as

Neurotoxicity of manganese oxide nanomaterials

  • Diana M. Stefanescu
  • Ali Khoshnan
  • Paul H. Patterson
  • Janet G. Hering
Research Paper


Manganese (Mn) toxicity in humans has been observed as manganism, a disease that resembles Parkinson’s disease. The mechanism of Mn toxicity and the chemical forms that may be responsible for its neurotoxicity are not well understood. We examined the toxicity of Mn oxide nanomaterials in a neuronal precursor cell model, using the MTS assay to evaluate mitochondrial function in living cells and the LDH assay to quantify the release of the enzyme lactate dehydrogenase as a result of damage to the cell membrane. Both assays show that the toxicity of Mn is dependent on the type of Mn oxide nanomaterial and its concentration as well as on the state of cell differentiation. Following exposure to Mn oxide nanomaterials, reactive oxygen species (ROS) are generated, and flow cytometry experiments suggest that cell death occurred through apoptosis. During exposure to Mn oxide nanomaterials, increased levels of the transcription factor NF-κB (which mediates the cellular inflammatory response) were observed.


Nano Manganese oxide Toxicity Neurons Manganism Parkinson’s disease Nanoparticles Nanomedicine 


  1. Böttcher T, Mix E, Koczan D, Bauer P, Pahnke J, Peters S, Weinelt S, Knoblich R, Strauss U, Cattaneo E, Thiesen H-J (2003) Gene expression profiling of ciliary neurotrophic factor-overexpressing rat striatal progenitor cells (ST14A) indicates improved stress response during the early stage of differentiation. J Neurosci Res 73(1):42–53. doi:10.1002/jnr.10624 CrossRefPubMedGoogle Scholar
  2. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419. doi:10.1093/toxsci/kfi256 CrossRefPubMedGoogle Scholar
  3. Brenneman KA, Wong BA, Buccellato MA, Costa ER, Gross EA, Dorman DC (2000) Direct olfactory transport of inhaled manganese (54MnCl2) to the rat brain: toxicokinetic investigations in a unilateral nasal occlusion model. Toxicol Appl Pharmacol 169:238–248. doi:10.1006/taap.2000.9073 CrossRefPubMedGoogle Scholar
  4. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK, Bruinink A, Stark WJ (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381. doi:10.1021/es052069i CrossRefPubMedGoogle Scholar
  5. Chang E, Thekkek N, Yu WW, Colvin VL, Drezek R (2006) Evaluation of quantum dot cytotoxicity based on intracellular uptake. Small 2(12):1412–1417. doi:10.1002/smll.200600218 CrossRefPubMedGoogle Scholar
  6. Chatterjee J, Haik Y, Chen C (2001) Synthesis and characterization of heat-stabilized albumin magnetic microspheres. Colloid Polym Sci 279(11):1073–1081. doi:10.1007/s003960100523 CrossRefGoogle Scholar
  7. Chithrani BD, Chan WCW (2007) Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6):1542–1550. doi:10.1021/nl070363y CrossRefPubMedADSGoogle Scholar
  8. Churg A (2003) Interactions of exogenous or evoked agents and particles: the role of reactive oxygen species. Free Radic Biol Med 34(10):1230–1235. doi:10.1016/S0891-5849(03)00175-8 CrossRefPubMedGoogle Scholar
  9. Cohen DD, Gulson BL, Davis JM, Stelcer E, Garton D, Hawas O, Taylor A (2005) Fine-particle Mn and other metals linked to the introduction of MMT into gasoline in Sydney, Australia: results of a natural experiment. Atmos Environ 39:6885–6896. doi:10.1016/j.atmosenv.2005.08.006 CrossRefGoogle Scholar
  10. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170. doi:10.1038/nbt875 CrossRefPubMedGoogle Scholar
  11. Dobson AW, Erikson KM, Aschner M (2004) Manganese neurotoxicity. Redox-active metals in neurological disorders, Annals of the New York Academy of Sciences, vol 2012. New York Academy of Science, pp 115–128Google Scholar
  12. Dorman DC, Struve MF, James RA, Marshall MW, Parkinson CU, Wong BA (2001) Influence of particle solubility on the delivery of inhaled manganese to the rat brain: manganese sulfate and manganese tetroxide pharmacokinetics following repeated (14-day) exposure. Toxicol Appl Pharmacol 170:79–87. doi:10.1006/taap.2000.9088 CrossRefPubMedGoogle Scholar
  13. Elder A, Gelein R, Silva V, Feikert T, Opanashuk L, Carter J, Potter R, Maynard A, Ito Y, Finkelstein J et al (2006) Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ Health Perspect 114(8):1172–1178PubMedCrossRefGoogle Scholar
  14. Fechter LD, Johnson DL, Lynch RA (2002) The relationship of particle size to olfactory nerve uptake of a non-soluble form of manganese into brain. Neurotoxicology 23:177–183. doi:10.1016/S0161-813X(02)00013-X CrossRefPubMedGoogle Scholar
  15. Filipov NM, Seegal RF, Lawrence DA (2005) Manganese potentiates in vitro production of proinflammatory cytokines and nitric oxide by microglia through a nuclear factor kappa B-dependent mechanism. Toxicol Sci 84(1):139–148. doi:10.1093/toxsci/kfi055 CrossRefPubMedGoogle Scholar
  16. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900. doi:10.1021/bc049951i CrossRefPubMedGoogle Scholar
  17. Gulson B, Mizon K, Taylor A, Korsch M, Stauber J, Davis JM, Louie H, Wu M, Swan H (2006) Changes in manganese and lead in the environment and young children associated with the introduction of methylcyclopentadienyl manganese tricarbonyl in gasoline—preliminary results. Environ Res 100(1):100–114. doi:10.1016/j.envres.2005.03.013 CrossRefPubMedGoogle Scholar
  18. Hiura TS, Kaszubowski MP, Li N, Nel AE (1999) Chemicals in diesel exhaust particles generate reactive oxygen radicals and induce apoptosis in macrophages. J Immunol 163(10):5582–5591PubMedGoogle Scholar
  19. Hiura TS, Li N, Kaplan R, Horwitz M, Seagrave J-C, Nel AE (2000) The role of a mitochondrial pathway in the induction of apoptosis by chemicals extracted from diesel exhaust particles. J Immunol 165:2703–2711PubMedGoogle Scholar
  20. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ (2005) In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975–983. doi:10.1016/j.tiv.2005.06.034 CrossRefPubMedGoogle Scholar
  21. Kreyling WG, Semmler-Behnke M, Moeller W (2006) Health implications of nanoparticles. J Nanopart Res 8:543–562. doi:10.1007/s11051-005-9068-z CrossRefGoogle Scholar
  22. Kumagai Y, Koide S, Taguchi K, Endo A, Nakai Y, Yoshikawa T, Shimojo N (2002) Oxidation of proximal protein sulfhydryls by phenanthraquinone, a component of diesel exhaust particles. Chem Res Toxicol 15(4):483–489. doi:10.1021/tx0100993 CrossRefPubMedGoogle Scholar
  23. Li N, Venkatesan MI, Miguel A, Kaplan R, Gujuluva C, Alam J, Nel A (2000) Induction of heme oxygenase-1 expression in macrophages by diesel exhaust particle chemicals and quinones via the antioxidant-responsive element. J Immunol 165(6):3393–3401PubMedGoogle Scholar
  24. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460PubMedGoogle Scholar
  25. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158–4163. doi:10.1021/es062629t CrossRefPubMedGoogle Scholar
  26. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): Implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352. doi:10.1021/es060589n CrossRefPubMedGoogle Scholar
  27. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-kB in human keratinocytes. Nano Lett 5:1676–1684. doi:10.1021/nl0507966 CrossRefPubMedADSGoogle Scholar
  28. Morgan JJ (2000) Manganese in natural waters and earth’s crust: its availability to organisms. In: Sigel A, Sigel H (eds) Metal ions in biological systems. Marcel Dekker, New York, pp 1–34Google Scholar
  29. Nel A, Xia T, Maedler L, Li N, Geffen D (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397 CrossRefPubMedADSGoogle Scholar
  30. Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8. doi:10.1007/s004200000185 CrossRefPubMedGoogle Scholar
  31. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839PubMedCrossRefGoogle Scholar
  32. Pahl HL (1999) Activators and target genes of Rel/NF-kB transcription factors. Oncogene 18:6853–6866. doi:10.1038/sj.onc.1203239 CrossRefPubMedGoogle Scholar
  33. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949. doi:10.1002/smll.200700378 CrossRefPubMedGoogle Scholar
  34. Peters K, Unger RE, Kirkpatrick CJ, Gatti AM, Monari E (2004) Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. J Mater Sci Mater Med 15(4):321–325. doi:10.1023/B:JMSM.0000021095.36878.1b CrossRefPubMedGoogle Scholar
  35. Phillips DM (1998) Electron microscopy: use of transmission electron microscopy to study cells in culture. Methods Cell Biol 57:297–311. doi:10.1016/S0091-679X(08)61587-3 CrossRefPubMedGoogle Scholar
  36. Rahman Q, Lohani M, Dopp E, Pemsel H, Jonas L, Weiss DG, Schiffmann D (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 110(8):797–800PubMedGoogle Scholar
  37. Rao DB, Wong BA, McManus BE, McElveen AM, James AR, Dorman DC (2003) Inhaled iron, unlike manganese, is not transported to the rat brain via the olfactory pathway. Toxicol Appl Pharmacol 193:116–126. doi:10.1016/S0041-008X(03)00340-5 CrossRefPubMedGoogle Scholar
  38. Sakon S, Xue X, Takekawa M, Sasazuki T, Okazaki T, Kojima Y, Piao J-H, Yagita H, Okumura K, Doi T, Nakano H (2003) NF-kB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909. doi:10.1093/emboj/cdg379 CrossRefPubMedGoogle Scholar
  39. Takizawa H, Ohtoshi T, Kawasaki S, Kohyama T, Desaki M, Kasama T, Kobayashi K, Nakahara K, Yamamoto K, Matsushima K, Kudoh S (1999) Diesel exhaust particles induce NF-kB activation in human bronchial epithelial cells in vitro: importance in cytokine transcription. J Immunol 162:4705–4711PubMedGoogle Scholar
  40. Tjalve H, Henriksson J (1999) Uptake of metals in the brain via olfactory pathways. Neurotoxicology 20(2–3):181–196PubMedGoogle Scholar
  41. Vitarella D, Wong BA, Moss OR, Dorman DC (2000) Pharmacokinetics of inhaled manganese phosphate in male Sprague–Dawley rats following subacute (14-day) exposure. Toxicol Appl Pharmacol 163:279–285. doi:10.1006/taap.1999.8874 CrossRefPubMedGoogle Scholar
  42. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807. doi:10.1021/nl061025k CrossRefPubMedADSGoogle Scholar
  43. Zhang W, Wang C, Zhang X, Xie Y, Qian Y (1999) Low temperature synthesis of nanocrystalline Mn3O4 by a solvothermal method. Solid State Ion 117:331–335. doi:10.1016/S0167-2738(98)00432-9 CrossRefGoogle Scholar
  44. Zhang W, Yang Z, Liu Y, Tang S, Han X, Chen M (2004) Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method. J Cryst Growth 263:394–399. doi:10.1016/j.jcrysgro.2003.11.099 CrossRefADSGoogle Scholar
  45. Zhao HS, He W, Wang YJ, Yue YZ, Gao XG, Li ZM, Yan SP, Zhou WJ, Zhang XD (2008) Biomineralizing synthesis of mesoporous hydroxyapatite-calcium pyrophosphate polycrystal using ovalbumin as biosurfactant. Mater Chem Phys 111(2–3):265–270. doi:10.1016/j.matchemphys.2008.04.002 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Diana M. Stefanescu
    • 1
    • 2
  • Ali Khoshnan
    • 3
  • Paul H. Patterson
    • 3
  • Janet G. Hering
    • 1
    • 4
  1. 1.Department of Environmental Science and Engineering, 138-78California Institute of TechnologyPasadenaUSA
  2. 2.Air Liquide, Delaware Research and Technology CenterNewarkUSA
  3. 3.Division of Biology, 216-76California Institute of TechnologyPasadenaUSA
  4. 4.Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland

Personalised recommendations