Photoluminescence of InAs quantum dots embedded in graded InGaAs barriers

  • Zongyou Yin
  • Xiaohong Tang
  • Jixuan Zhang
  • Jinghua Zhao
  • Sentosa Deny
  • Hao Gong
Research Paper

Abstract

The effects of the top barrier and the dot density on photoluminescence (PL) of the InAs quantum dots (QDs) sandwiched by the graded InxGa1−xAs barriers grown by metal-organic vapor phase epitaxy (MOVPE) have been studied. Two emission peaks corresponding to the ground state and the 1st excited state transitions of the QD structures have been observed, which matches well to the theoretical calculation. The PL emission linewidth and intensity of the InAs QDs structure are improved by reducing the Indium/Gallium composition variation of the graded InxGa1−xAs top barrier layer of the structure. The QDs’ ground states filling excitation power depends on the crystal quality of the InGaAs barrier layer and the QD density. The extracted thermal activation energy for the QDs’ PL emission is sensitive to the QD size.

Keywords

Photoluminescence Quantum dots Graded barrier Crystal quality State filling Nanocomposites 

References

  1. Borgstrom M, Pires MP, Bryllert T et al (2003) InAs quantum dots grown on InAlGaAs lattice matched to InP. J Cryst Growth 252:481–485CrossRefADSGoogle Scholar
  2. Gong Q, Notzel R, Van Veldhoven PJ et al (2004) InAs/InP quantum dots emitting in the 1.55 μm wavelength region by inserting submonolayer GaP interlayers. Appl Phys Lett 85:1404–1406CrossRefADSGoogle Scholar
  3. Jiang HT, Singh J (1997) Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: an eight-band study. Phys Rev B 56:4696–4701CrossRefADSGoogle Scholar
  4. Kim YG, Joh YS, Song JH et al (2003) Temperature-dependant photoluminescence of ZnSe/ZnS quantum dots fabricated under the Stranski–Krastanov mode. Appl Phys Lett 83:2656–2658CrossRefADSGoogle Scholar
  5. Kwangmin P, Pilkyung M, Eungjin A et al (2005) Effects of thin GaAs insertion layer on InAs/(InGaAs)/InP(001) quantum dots grown by metal organic chemical vapor deposition. Appl Phys Lett 86:223110–223112CrossRefGoogle Scholar
  6. Mazur YI, Liang BL, Wang ZM et al. (2007) Development of continuum states in photoluminescence of self-assembled InGaAs/GaAs quantum dots. J Appl Phys 101:014301–1–6Google Scholar
  7. Nishi K, Saito H, Sugou S et al (1999) A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett 74:1111–1113CrossRefADSGoogle Scholar
  8. Schmidt KH, Medeiros-Ribeiro G, Garcia J et al (1997) Size quantization effects in InAs self-assembled quantum dots. Appl Phys Lett 70:1727–1729CrossRefADSGoogle Scholar
  9. Schumann O, Birner S, Baudach M et al (2005) Effects of strain and confinement on the emission wavelength of InAs quantum dots due to a GaAs1-xNx capping layer. Phys Rev B 71:245316–1–10Google Scholar
  10. Seravalli L, Minelli M, Frigeri P et al (2007) Quantum dot strain engineering of InAs/InGaAs nanostructures. J Appl Phys 101:024313–1–8Google Scholar
  11. Takaaki M, Richard N, Qian G et al (2005) Temperature-dependent photoluminescence of self-assembled (In, Ga)As quantum dots on GaAs (100): carrier redistribution through low-energy continuous states. Jpn J Appl Phys 44:6829–6832CrossRefGoogle Scholar
  12. Tang XH, Yin ZY, Liu W et al (2006) Mid-infrared emission from InAs quantum dots grown by metal-organic vapor phase epitaxy. IEEE Trans Nanotechnol 5:683–686CrossRefADSGoogle Scholar
  13. Walther C, Bollmann J, Kissel H et al (2000) Characterization of electron trap states due to InAs quantum dots in GaAs. Appl Phys Lett 76:2916–2918CrossRefADSGoogle Scholar
  14. Yin ZY, Tang XH, Liu W et al (2006) Effects of InxGa1−xAs matrix layer on InAs quantum dots formation and their emission wavelength. J Appl Phys 100:033109-1-5. doi:10.1063/1.2220477 Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Zongyou Yin
    • 1
  • Xiaohong Tang
    • 1
  • Jixuan Zhang
    • 2
  • Jinghua Zhao
    • 1
  • Sentosa Deny
    • 1
  • Hao Gong
    • 2
  1. 1.Photonics Research Center, School of Electrical & Electronic EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Department of Materials Science & EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations