Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 995–1003 | Cite as

Synthesis and characterization of titanium nitride, niobium nitride, and tantalum nitride nanocrystals via the RAPET (reaction under autogenic pressure at elevated temperature) technique

  • P. P. George
  • A. Gedanken
  • Shirly Ben-David Makhlouf
  • I. Genish
  • A. Marciano
  • Riam Abu-Mukh
Brief Communication


TiN, NbN, and TaN nanocrystals have been selectively prepared through a simple, solvent-free, and convenient reaction under autogenic pressure at moderate temperature (RAPET) process at 350 °C for 12 h, reacting transition metal chlorides and sodium azide. The nanostructures obtained are characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). A reaction mechanism is suggested based on the experimental results. These rapid reactions produce nanocrystals of TiN, NbN, and TaN with average sizes of approximately 30, 28, and 27 nm, respectively (as calculated from X-ray line broadening). An octahedral inorganic fullerene was detected among the various structures of the TiN.


Metal nitrides Nanoparticles Inorganic fullerenes Particle production 


  1. Aryasomayajula A, Valleti K, Aryasomayajula S, Bhat DG (2006) Pulsed DC magnetron sputtered tantalum nitride hard coatings for tribological applications. Surf Coat Technol 201:4401–4405CrossRefGoogle Scholar
  2. Blocher JM (1956) Nitrides. In: Campbell IE (ed) High temperature technology. Wiley, New York, p. 171Google Scholar
  3. Buha J, Djerdj I, Antonietti M, Niederberger M (2007) Thermal transformation of metal oxide nanoparticles into nanocrystalline metal nitrides using cyanamide and urea as nitrogen source. Chem Mater 19:3499–3505CrossRefGoogle Scholar
  4. Buhl R, Pulker HK, Moll E (1981) TiN coatings on steel. Thin Solid Films 80:265–270CrossRefADSGoogle Scholar
  5. Carmalt CJ, Dinnage CW, Parkin IP, Peters ES, Molloy K, Colucci AM (2003) The use of hexamethyldisilathiane for the synthesis of transition metal sulfides. Polyhedron 22:1255–1262CrossRefGoogle Scholar
  6. Choi J, Gillan EG (2005) Solvothermal synthesis of nanocrystalline copper nitride from an energetically unstable copper azide precursor. Inorg Chem 44:7385–7393PubMedCrossRefGoogle Scholar
  7. Fabbricatore P, Fernandes P, Gualco GC, Merlo F, Musenich R, Parodi R (1989) Study of niobium nitrides for superconducting r.f. cavities. J Appl Phys 66:5944–5949CrossRefADSGoogle Scholar
  8. Fenker M, Balzer M, Buchi RV, Jehn HA, Kappl H, Lee JJ (2003) Deposition of NbN thin films onto high-speed steel using reactive magnetron sputtering for corrosion protective applications. Surf Coat Technol 163:169–175CrossRefGoogle Scholar
  9. Fischer A, Antonietti M, Thomas A (2007) Growth confined by the nitrogen source: synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride. Adv Mater 19:264–267CrossRefGoogle Scholar
  10. George PP, Gedanken A (2008) Synthesis, characterization, and photoluminescence properties of In2O3 nanocrystals encapsulated by carbon vesicles and neat In2O3 nanocrystals generated by the RAPET technique. Eur J Inorg Chem 6:919–924CrossRefGoogle Scholar
  11. George PP, Pol VG, Gedanken A (2007) Synthesis and characterization of Nb2O5@C core-shell nanorods and Nb2O5 nanorods by reacting Nb(OEt)5 via RAPET (reaction under autogenic pressure at elevated temperatures) technique. Nanoscale Res Lett 2:17CrossRefADSGoogle Scholar
  12. Gillan EG, Kaner RB (1994) Rapid solid-state synthesis of refractory nitrides. Inorg Chem 33:5693–5700CrossRefGoogle Scholar
  13. Gispert MP, Serro AP, Colaço R, Botelho do Rego AM, Alves E, daSilva RC, Brogueira P, Pires E, Saramago B (2007) Tribiological behaviour of Cl-implanted TiN coatings for biomedical applications. Wear 262:1337–1345CrossRefGoogle Scholar
  14. Gomathi A, Rao CNR (2006) Nanostructures of the binary nitrides, BN, TiN, and NbN, prepared by the urea-route. Mater Res Bull 41:941–947CrossRefGoogle Scholar
  15. Griffiths LE, Mount AR, Pulham CR, Lee MR, Kondoh H, Ohta T (2001) Low temperature electrochemical synthesis of titanium nitride. Chem Commun 6:579–580CrossRefGoogle Scholar
  16. Hector AL, Parkin IP (1995) Sodium azide as a reagent for solid state metathesis preparations of refractory metal nitrides. Polyhedron 14:913–917CrossRefGoogle Scholar
  17. Hershfinkel M, Gheber LA, Volterra V, Hutchison JL, Margulis L, Tenne R (1994) Nested polyhedra of MX2 (M = W, Mo; X = S, Se) probed by high-resolution electron microscopy and scanning tunneling microscopy. J Am Chem Soc 116:1914–1917CrossRefGoogle Scholar
  18. Hu J, Lu Q, Tang K, Yu S, Qian Y, Zhou G, Liu X, Wu J (2000) Low-temperature synthesis of nanocrystalline titanium nitride via a benzene-thermal route. J Am Ceram Soc 83:430–432CrossRefGoogle Scholar
  19. Joshi UA, Chung S-H, Soo Hyun J-S, Lee (2005) Low-temperature, solvent-free solid-state synthesis of single-crystalline titanium nitride nanorods with different aspect ratios. J Solid State Chem 178:755–760CrossRefADSGoogle Scholar
  20. Li YG, Gao L (2003) Synthesis and characterization of nanocrystalline niobium nitride powders. J Am Ceram Soc 86:1205–1207CrossRefGoogle Scholar
  21. Margulis L, Salitra G, Talianker M, Tenne R (1993) Nested fullerene-like structures. Nature 365:113–114CrossRefADSGoogle Scholar
  22. O’Loughlin JL, Wallace CH, Knox MS, Kaner RB (2001) Rapid solid-state synthesis of tantalum, chromium, and molybdenum nitrides. Inorg Chem 40:2240–2245PubMedCrossRefGoogle Scholar
  23. Ostling M, Nygren S, Petersson CS, Norstrom H, Buchta R, Blom HO, Berg S (1986) A comparative study of the diffusion barrier properties of TiN and ZrN. Thin Solid Films 145:81–88CrossRefADSGoogle Scholar
  24. Pol SV, Pol VG, Gedanken A (2004a) Reactions under autogenic pressure at elevated temperature (RAPET) of various alkoxides: formation of metals/metal oxides-carbon core-shell structures. Chem Eur J 10:4467–4473CrossRefGoogle Scholar
  25. Pol VG, Pol SV, Gedanken A, Goffer Y (2004b) Thermal decomposition of tetraethylorthosilicate (TEOS) produces silicon coated carbon spheres. J Mater Chem 14:966–969CrossRefGoogle Scholar
  26. Pol SV, Pol VG, Kessler VG, Seisenbaeva GA, Sung M, Asai S, Gedanken A (2004c) The effect of a magnetic field on a RAPET (reaction under autogenic pressure at elevated temperature) of MoO(OMe)4: fabrication of MoO2 nanoparticles coated with carbon or separated MoO2 and carbon particles. J Phys Chem B 108:6322–6327PubMedCrossRefGoogle Scholar
  27. Pol SV, Pol VG, Kessler VG, Gedanken A (2006) Growth of carbon sausages filled with in situ formed tungsten oxide nanorods: thermal dissociation of tungsten(VI) isopropoxide in isopropanol. New J Chem 30:370–376CrossRefGoogle Scholar
  28. Storms EK (1972) Contribution to phase relationships and electrical properties of refractory carbides and nitrides. Solid State Chem. MTP International Review of Science, University Press, 10:37–38Google Scholar
  29. Sundgren JE (1985) Structure and properties of TiN coatings. Thin Solid Films 128:21–44CrossRefADSGoogle Scholar
  30. Tenne R (1995) Doped and heteroatom-containing fullerene-like structures and nanotubes. Adv Mater 7:965–995CrossRefGoogle Scholar
  31. Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446CrossRefADSGoogle Scholar
  32. Toth LE (1971) Transition metal carbides & nitrides. In: Refractory materials, vol 7. Academic Press, New YorkGoogle Scholar
  33. Troitskiy VN, Domashnev IA, Kurkin EN, Grebtsova OM, Berestenko VI, Balikhin IL, Gurov SV (2003) Synthesis and characteristics of ultra-fine superconducting powders in the Nb–N, Nb–N–C, Nb–Ti–N–C systems. J Nanopart Res 5:521–528CrossRefGoogle Scholar
  34. Wu H, Hunting J, Uheda K, Lepak L, Konkapaka P, Disalvo FJ, Spencer MG (2005) Rapid synthesis of gallium nitride powder. J Cryst Growth 279:303–310CrossRefADSGoogle Scholar
  35. Zhang QH, Gao L (2004) Ta3N5 nanoparticles with enhanced photocatalytic efficiency under visible light irradiation. Langmuir 20:9821–9827PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. P. George
    • 1
  • A. Gedanken
    • 1
  • Shirly Ben-David Makhlouf
    • 1
  • I. Genish
    • 1
  • A. Marciano
    • 1
  • Riam Abu-Mukh
    • 1
  1. 1.Department of Chemistry, Kanbar Laboratory for Nanomaterials, Institute of Nanotechnology and Advanced MaterialsBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations