Journal of Nanoparticle Research

, 11:1937

Biosynthesis of insulin-silk fibroin nanoparticles conjugates and in vitro evaluation of a drug delivery system

  • Hai-Bo Yan
  • Yu-Qing Zhang
  • Yong-Lei Ma
  • Li-Xia Zhou
Research Paper

Abstract

Silk fibroin derived from Bombyx mori is a biomacromolecular protein with outstanding biocompatibility. When it was dissolved in highly concentrated CaCl2 solution and then the mixture of the protein and salt was subjected to desalting treatments for long time in flowing water, the resulting liquid silk was water-soluble polypeptides with different molecular masses, ranging from 8 to 70 kDa. When the liquid silk was introduced rapidly into acetone, silk protein nanoparticles with a range of 40–120 nm in diameter could be obtained. The crystalline silk nanoparticles could be conjugated covalently with insulin alone with cross-linking reagent glutaraldehyde. In vitro properties of the insulin-silk fibroin nanoparticles (Ins-SFN) bioconjugates were determined by Enzyme-Linked Immunosorbent Assay (ELISA). The optimal conditions for the biosynthesis of Ins-SFN bioconjugates were investigated. The Ins-SFN constructs obtained by 8 h of covalent cross-linking with 0.7% cross-linking reagent and the proportion of insulin and SFN being 30 IU: 15 mg showed much higher recoveries (90–115%). When insulin was coupled covalently with silk nanoparticles, the resistance of the modified insulin to trypsin digestion and in vitro stability in human serum were greatly enhanced as compared with insulin alone. The results in human serum indicated that the half-life in vitro of the biosynthesized Ins-SFN derivatives was about 2.5 times more than that of native insulin. Therefore, the silk protein nanoparticles have the potential values for being studied and developed as a new bioconjugate for enzyme/polypeptide drug delivery system.

Keywords

Silk fibroin nanoparticles Insulin Biosynthesis Conjugation ELISA Cross-linking Nanobiotechnology Biocompatibility 

References

  1. Asada H, Douen T, Mizokoshi Y, Fujita T, Murakami M, Yamamoto A, Muranishi S (1994) Stability of acyl derivative of insulin in the small intestine: relative importance of insulin association characteristics in aqueous solution. Pharm Res 11:1115–1119. doi:10.1023/A:1018928613837 CrossRefPubMedGoogle Scholar
  2. Asada H, Douen T, Waki M, Adachi S, Fujita T, Yamamoto A, Muranishi S (1995) Absorption characteristics of chemically modified-insulin derivatives with various fatty acids in the small and large intestine. J Pharm Sci 84:682–687. doi:10.1002/jps.2600840604 CrossRefPubMedGoogle Scholar
  3. Baudys M, Uchio T, Mix D, Wilson D, Wan SK (1995) Physical stabilization of insulin glycosylation. J Pharm Sci 84:28–33. doi:10.1002/jps.2600840108 CrossRefPubMedGoogle Scholar
  4. Grenha A, Remuñán-López C, Carvalho EL, Seijo B (2008) Microspheres containing lipid/chitosan nanoparticles complexes for pulmonary delivery of therapeutic proteins. Eur J Pharm Biopharm 69(1):83–93. doi:10.1016/j.ejpb.2007.10.017 CrossRefPubMedGoogle Scholar
  5. Holle LM (1997) Pegaspargase: an alternative? Ann Pharmacother 31:616–617PubMedGoogle Scholar
  6. Instruction of the INS-ELISA (KAP1215) kit from BioSource Europe S. A (8, Rue de I’Industrie, B-1400 Nivelles, Belgium)Google Scholar
  7. Jintapattanakit A, Junyaprasert VB, Mao S, Sitterberg J, Bakowsky U, Kissel T (2007) Peroral delivery of insulin using chitosan derivatives: a comparative study of polyelectrolyte nanocomplexes and nanoparticles. Int J Pharm 342(1–2):240–249. doi:10.1016/j.ijpharm.2007.05.015 CrossRefPubMedGoogle Scholar
  8. Kavimandan NJ, Losi E, Peppas NA (2006) Novel delivery system based on complexation hydrogels as delivery vehicles for insulin-transferrin conjugates. Biomaterials 27:3846–3854. doi:10.1016/j.biomaterials.2006.02.026 CrossRefPubMedGoogle Scholar
  9. Krauland AH, Alonso MJ (2007) Chitosan/cyclodextrin nanoparticles as macromolecular drug delivery system. Int J Pharm 340(1–2):132–134. doi:10.1016/j.ijpharm.2007.03.005 Google Scholar
  10. Krauland AH, Guggi D, Bernkop-Schnürch A (2006) Thiolated chitosan microparticles: a vehicle for nasal peptide drug delivery. Int J Pharm 307:270–277. doi:10.1016/j.ijpharm.2005.10.016 CrossRefPubMedGoogle Scholar
  11. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685. doi:10.1038/227680a0 CrossRefPubMedADSGoogle Scholar
  12. Lin W, Coombes AGA, Davies MC, Davis SS, Illum LJ (1993) Preparation of sub-100 nm human serum albumin nanospheres using a pH-coacervation method. J Drug Target 1:237–243. doi:10.3109/10611869308996081 CrossRefPubMedGoogle Scholar
  13. Lin YH, Mi FL, Chen CT (2007) Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8:146–152. doi:10.1021/bm0607776 CrossRefPubMedGoogle Scholar
  14. Müller GM, Leuenberger H, Kissel T (1996) Albumin nanospheres as carriers for passive drug targeting: an optimized manufacturing technique. Pharm Res 13:32–37. doi:10.1023/A:1016064930502 CrossRefPubMedGoogle Scholar
  15. Reis CP, Ribeiro AJ, Neufeld RJ, Veiga F (2007) Alginate microparticles as novel carrier for oral insulin delivery. Biotechnol Bioeng 96(5):977–989. doi:10.1002/bit.21164 CrossRefPubMedGoogle Scholar
  16. Sadayuk K, Hirokuni O, Mayumi K, Mamor K, Ruby P, Koshi M (1999) Fibroin allergy: IgE mediated hypersensitivity to silk suture materials. J Nippon Med Sch 66(1):41–44Google Scholar
  17. Sakabe H, Ito H, Miyamoto T, Noishiki Y, Ha WS (1989) In vivo blood compatibility of regenerated silk fibroin. SEN-I GAKKAISHI 45(11):487–490Google Scholar
  18. Santin M, Motta A, Freddi G, Cannas M (1999) In vitro evaluation of the inflammatory potential of the silk fibroin. J Biomed Mater Res 46(3):382–389. doi:10.1002/(SICI)1097-4636(19990905)46:3<382::AID-JBM11>3.0.CO;2-RCrossRefPubMedGoogle Scholar
  19. Sarmento B, Ribeiro A, Veiga F, Ferreira D (2006) Development and characterization of new insulin containing polysaccharide nanoparticles. Colloids Surf B Biointerfaces 53:193–202. doi:10.1016/j.colsurfb.2006.09.012 CrossRefPubMedGoogle Scholar
  20. Sarmento B, Martins S, Ferreira D, Souto EB (2007a) Oral insulin delivery by means of solid lipid nanoparticles. Int J Nanomed 2(4):743–749Google Scholar
  21. Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R (2007b) Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules 8(10):3054–3060. doi:10.1021/bm0703923 CrossRefPubMedGoogle Scholar
  22. Weber C, Coester C, Kreuter J, Langer K (2000) Desolvation process and surface characteristics of protein nanoparticles. Int J Pharm 194:91–102. doi:10.1016/S0378-5173(99)00370-1 CrossRefPubMedGoogle Scholar
  23. Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature 184(Suppl 21):1648–1649. doi:10.1038/1841648b0 CrossRefPubMedADSGoogle Scholar
  24. Yin ZN, Lu B (2000) Study on Sustained Release Insulin Nanocapsules for Injection. Chin Pharm J 31(8):352–355Google Scholar
  25. Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP (2006a) Silk sericin-insulin bioconjugates: synthesis, characterization and biological activity. J Contr Rel 115:307–315. doi:10.1016/j.jconrel.2006.08.019 CrossRefGoogle Scholar
  26. Zhang YQ, Ma Y, Xia YY, Shen WD, Mao JP, Zha XM et al (2006b) Synthesis of silk fibroin-insulin bioconjugates and their characterization and activities in vivo. J Biomed Mater Res Part B Appl Biomater 79B:275–283. doi:10.1002/jbm.b.30539 CrossRefGoogle Scholar
  27. Zhang YQ, Shen WD, Xiang RL, Zhuge LJ, Gao WJ, Wang WB (2007) Formation of silk fibroin nanoparticles in water-miscible organic solvent and their characterization. J Nanopart Res 9:885–900. doi:10.1007/s11051-006-9162-x CrossRefGoogle Scholar
  28. Zhang YQ, Xiang RL, Yan HB, Chen XX (2008a) Preparation of silk fibroin nanoparticles and their application to immobilization of l-asparaginase. Chem J Chin Univ 29(3):628–633Google Scholar
  29. Zhang X, Zhang H, Wu Z, Wang Z, Niu H, Li C (2008b) Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles. Eur J Pharm Biopharm 68(3):526–534. doi:10.1016/j.ejpb.2007.08.009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Hai-Bo Yan
    • 1
    • 2
  • Yu-Qing Zhang
    • 1
    • 2
  • Yong-Lei Ma
    • 1
    • 2
  • Li-Xia Zhou
    • 1
    • 2
  1. 1.The State Engineering Laboratory of Modern SilkSoochow UniversitySuzhouPeople’s Republic of China
  2. 2.Silk Biotechnology Key Laboratory of Suzhou CityMedical College of Soochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations