Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 671–689 | Cite as

Newer nanoparticles in hyperthermia treatment and thermometry

Technology and Applications


Heating tumors by nanoparticles and resistance in hypoxic tumor cells to a high temperature is emerging as an effective tool in therapeutic oncology as nanomedicine tool. The art of imaging temperature in a tumor at various locations is emerging as the selective approach of hyperthermia to monitor temperature and treat the tumor. However, thermometry and tumor cell interaction with nanoparticles may monitor and evaluate the tumor cell survival after exposure to high physiological temperatures. The application of 10–100 nanometer sized nanoparticles in tumor hyperthermia has emerged as an effective monitoring tool as magnetic resonance (MR) thermal mapping. The temperature and nanoparticle magnetic moment relationship is specific. Furthermore, there are two main issues that are unsolved as of yet. First issue is the relationship of tumor energy changes due to tumor magnetization; linear attenuation after magnetic field and X-ray exposure with tissue temperature increase. The second issue is the undefined behavior of the nanoparticle inside the tumor as diamagnetic or paramagnetic can be therapeutic and it depends on the tumor tissue temperature. In vivo imaging such as MR thermometry mapping of different hypoxic tumor locations solves these issues to some extent. The art of the nanoparticle-induced hyperthermia does have a great impact on public health as alternative therapeutic oncology.


Tumor Oncology Hypoxia Hyperthermia Nanoparticles Thermal therapy Nanomedicine Cancer treatment 

Supplementary material

11051_2008_9548_MOESM1_ESM.doc (48 kb)
MOESM1 (DOC 48 kb)


  1. Alexiou C, Arnold W, Hulin P, Klein RJ, Renz H, Parak FG et al (2001) Magnetic mitoxantrone nanoparticle detection by histology, X-ray and MRI after magnetic tumor targeting. J Magn Magn Mater 225:187–193. doi:10.1016/S0304-8853(00)01256-7 ADSCrossRefGoogle Scholar
  2. Allen M, Bulte JWM, Liepold L, Basu G, Zywicke HA, Frank JA, Young M, Douglas T (2005) paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast magnets. Magn Reson Med 54:807–812. doi:10.1002/mrm.20614 PubMedCrossRefGoogle Scholar
  3. Amao Y, Okura I (2000) Fullerene C60 immobilized in polymethylmethacrylate film as an optical temperature sensing material. Analysis 28:847–849. doi:10.1051/analusis:2000154 CrossRefGoogle Scholar
  4. Andrä W, Nowak H (eds) (1998) Magnetism in medicine. WILEY-VCH, Berlin, ISBN 3-527-40221-7, p 511 SeitenGoogle Scholar
  5. Arthur RM, Straube WT, Trobaugh JW, Moros EG (2005) Non-invasive estimation of hyperthermia temperatures with ultrasound. Int J Hyperth 21(6):589–600. doi:10.1080/02656730500159103 CrossRefGoogle Scholar
  6. Auzans E, Zins D, Blums E, Massart R (1999) Synthesis and properties of Mn-Zn ferrite ferrofluids. J Mater Sci 34:1253–1260. doi:10.1023/A:1004525410324 CrossRefGoogle Scholar
  7. Baker I, Zeng Q, Li W, Sullivan CR (2006) Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia. J Appl Phys 99(8):106. doi:10.1063/1.2171960 CrossRefGoogle Scholar
  8. Bodurka J, Bandettini PA (2002) Toward direct mapping of neuronal activity: MRI detection of ultraweak, transient magnetic field changes. Magn Reson Med 47:1052–1058. doi:10.1002/mrm.10159 PubMedCrossRefGoogle Scholar
  9. Bodurka J, Jesmanowicz A, Hyde JS, Xu H, Estkowski L, Li SJ (1999) Current induced magnetic resonance phase imaging. J Magn Reson 137:265–271. doi:10.1006/jmre.1998.1680 PubMedCrossRefADSGoogle Scholar
  10. Brittenham GM et al (1982) Magnetic susceptibility measurement of human iron stores. N Engl J Med 307:1671–1675PubMedGoogle Scholar
  11. Brusentsova TN, Kuznetsov VD (2007) Synthesis and investigation of magnetic properties of substituted ferrite nanoparticles of spinel system Mn1−xZnx[Fe2−yLy]O4. J Magn Magn Mater 311(1):22–25. doi:10.1016/j.jmmm.2006.11.160 ADSCrossRefGoogle Scholar
  12. Brusentsov N, Nikitin L, Brusentsova T, Kuznetsov AA, Bayburtskiy FS, Schumakov L, Jurchenko N (2002) Magnetic fluid hyperthermia of the mouse experimental tumor. J Magn Magn Mater 252:378–380. doi:10.1016/S0304-8853(02)00634-0 ADSCrossRefGoogle Scholar
  13. Brusentsova TN, Brusentsov NA, Kuznetsov VD, Nikiforov VN (2005) Synthesis and investigation of magnetic properties of Gd-substituted Mn–Zn ferrite nanoparticles as a potential low-T C agent for magnetic fluid hyperthermia. J Magn Magn Mater 293(1):298–302. doi:10.1016/j.jmmm.2005.02.023 ADSCrossRefGoogle Scholar
  14. Buzas CJ, Pacher P, Rosenberg H, Hajnoczky G (2002) Single cell calcium imaging cell calcium imaging studies of pathomechanism of malignant hyperthermia. Biophys J 82(1):649Google Scholar
  15. Cheng KH, Hernandez M (1992) Magnetic resonance diffusion imaging detects structural damage in biological tissues upon hyperthermia. Cancer Res 52(11):6066–6073PubMedGoogle Scholar
  16. Chivukula VS, Shur MS, Ciplys D (2007) Recent advances in application of acoustic, acousto-optic and photoacoustic methods in biology and medicine. Phys Status Solidif 204(10):3209–3236. doi:10.1002/pssa.200723313 aCrossRefADSGoogle Scholar
  17. Cho YW, Park SA, Han TH, Son DH, Ji Sun Park JS, Oh SJ, Moon DH, Cho KJ, Ahn CH, Byun Y, Kim IS, Kwon IC, Kim SY (2007) In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: Mechanisms, key factors, and their implications. Biomaterials 28(6):1236–1247. doi:10.1016/j.biomaterials.2006.10.002 PubMedCrossRefGoogle Scholar
  18. Cohen D (1973) Ferromagnetic contamination in the lungs and other organs of the human body. Science 173:745–748. doi:10.1126/science.180.4087.745 ADSCrossRefGoogle Scholar
  19. Conway J, Hawley M, Mangnall Y, Amasha H, van Rhoon GC (1992) Experimental assessment of electrical impedance imaging for hyperthermia monitoring. Clin Phys Physiol Meas 13:185–189. doi:10.1088/0143-0815/13/A/036 PubMedCrossRefGoogle Scholar
  20. Demuro A, Parker I (2006) Imaging single-channel calcium microdomains. Cell Calcium 40(5–6):413–422. doi:10.1016/j.ceca.2006.08.006 PubMedCrossRefGoogle Scholar
  21. de Senneville BD, Mougenot C, Quesson B, Dragonu I, Grenier N, Moonen CT (2007) MR thermometry for monitoring tumor ablation. Eur Radiol 17(9):2401–2410. doi:10.1007/s00330-007-0646-6 PubMedCrossRefGoogle Scholar
  22. Dowlatshahi K (1992) Percutaneous interstitial laser therapy of a patient with recurrent heptoma in a transplanted liver. Surgery 112:603PubMedGoogle Scholar
  23. Drake P, Cho HJ, Shih PS, Kao CH, Lee KF, Kuo CH, Lin XZ, Lin YJ (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17:4914. doi:10.1039/b711962c CrossRefGoogle Scholar
  24. Fortin JP, Wilhelm C, Gazeau F, Servais J, Talbot D, Ménager C, Bacri JC (2006) Use of magnetic nanoparticles as intracellular agents for hyperthermia. Contrast Media Mol Imaging 1(2):56–57. doi:10.1002/cmmi.12 CrossRefGoogle Scholar
  25. Gellermann J, Wlodarczyk W, Feussner A, Fahling H, Nadobny J, Hildebrandt B, Felix R, Wust P (2005) Methods and potentials of magnetic resonance imaging for monitoring radiofrequency hyperthermia in a hybrid system. Int J Hyperthermia 21:497–513. doi:10.1080/02656730500070102 CrossRefGoogle Scholar
  26. Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM, Langer R (1995) The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 16(2–3):215–233. doi:10.1016/0169-409X(95)00026-4 CrossRefGoogle Scholar
  27. Gutknect N, Kanehl S, Moritz A, Mittermayer C, Lampert L (1998) Effects of Nd:YAG-laser irradiation on monolayer cell cultures. Lasers Surg Med 22:30–36. doi:10.1002/(SICI)1096-9101(1998)22:1<30::AID-LSM8>3.0.CO;2-YCrossRefGoogle Scholar
  28. Haik Y, al-Ramadi B, Issa B, Qadri S, Hayek S, Hijaze H (2008) Multifunctional Nanoparticles for Imaging Guided Interventions.
  29. Han S, Lin J, Zhou F, Vellanoweth RL (2000) Oligonucleotide-capped gold nanoparticles for improved atomic force microscopic imaging and enhanced selectivity in polynucleotide detection. Biochem Biophys Res Commun 279(1):265–269. doi:10.1006/bbrc.2000.3943 PubMedCrossRefGoogle Scholar
  30. Harrison GG, Saunders SJ, Biebuyck JF, Hickman R, Dent DM, Weaver V et al (1969) Anaesthetic-induced malignant hyperpyrexia and a method for its prediction. Br J Anaesth 41:844–855. doi:10.1093/bja/41.10.844 PubMedCrossRefGoogle Scholar
  31. Heinfeld JF, Slatkin DN, Focella TM, Smilowitz HM (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79:248–253. doi:10.1259/bjr/13169882 CrossRefGoogle Scholar
  32. Heisterkamp J, van Hillegersberg R, Ijzermans JNM (1999) Critical temperature and heating time for coagulation damage: Implications for interstitial laser coagulation (ILC) of tumors. Lasers Surg Med 25:257–262. doi:10.1002/(SICI)1096-9101(1999)25:3<257::AID-LSM10>3.0.CO;2-VPubMedCrossRefGoogle Scholar
  33. Hiroka M, Mitsumori M, Hiroi N, Ohno S, Tanaka Y, Kotsuka Y, Sugimachi K (2000) Development of RF and microwave heating equipment and clinical application to cancer treatment in japan. IEEE Trans Microw Theory Tech 48:1789–1799. doi:10.1109/22.883855 CrossRefADSGoogle Scholar
  34. Huang WC, Chen YC (2008) Photochemical synthesis of polygonal gold nanoparticles. J Nanopart Res 10(4):697–702. doi:10.1007/s11051-007-9293-8 CrossRefGoogle Scholar
  35. Huff TB, Tong L, Zhao Y, Hansen MN, Cheng J-X, Wei A (2007) Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2(1):125–132. doi:10.2217/17435889.2.1.125 PubMedCrossRefGoogle Scholar
  36. Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, Saida T, Kobayashi T (2003) Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Sci 94(3):308–313. doi:10.1111/j.1349-7006.2003.tb01438.x PubMedCrossRefGoogle Scholar
  37. Jennifer AN, Bennett LH, Wagner MJ (2002) Solution, synthesis of gadolinium nanoparticles. J Am Chem Soc 124(12):2979–2983. doi:10.1021/ja0122703 CrossRefGoogle Scholar
  38. Jones DN, McCowage GB, Sostman HD, Brizel DM, Layfield L, Charles HC, Dewhirst MW, Prescott DM, Friedman HS, Harrelson JM, Scully SP, Coleman RE (1996) Monitoring of neoadjuvant therapy response of soft-tissue and musculoskeletal sarcoma using fluorine-18-FDG PET. J Nucl Med 37:1438–1444PubMedGoogle Scholar
  39. Jones EF, He J, VanBrocklin HF, Franc BL, Seo Y (2008) Nanoprobes for Medical Diagnosis: Current Status of Nanotechnology in Molecular Imaging. Curr Nanosci 4(1):17–29. doi:10.2174/157341308783591843 CrossRefADSGoogle Scholar
  40. Jordan A, Scholz R, Maier-Hauff K, Johannsen M, Wust P, Nadobny J, Schirra H, Schmidt H, Deger S, Loening S, Lanksch W, Felix R (2001) Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia. J Magn Magn Mater 225(1):118–126. doi:10.1016/S0304-8853(00)01239-7 ADSCrossRefGoogle Scholar
  41. Kannan R, Katti KV (2007) Targeted gold nanoparticles for imaging and therapy. In: Labhasetwar V, Leslie-Pelecky DL (eds) Biomedical applications of nanotechnology, vol 7. Wiley, NY, p 168Google Scholar
  42. Karam JA, Mason RP, Koeneman KS, Antich PP, Benaim EA, Hsieh TJ (2003) Molecular imaging in prostate cancer. J Cell Biochem 90:473–483. doi:10.1002/jcb.10636 PubMedCrossRefGoogle Scholar
  43. Katti KV, Kannan R, Katti K, Kattumori V, Pandrapraganda R, Rahing V, Cutler C, Boote EJ, Casteel SW, Smith CJ, Robertson JD, Jurrison SS (2006) Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J Phys 56(1):23–34. doi:10.1007/s10582-006-1033-2 CrossRefGoogle Scholar
  44. Kim EE, Jackson EF (1999) Hyperthermia of cancer. In: Molecular imaging in oncology: PET, MRI, MRS. Springer-Verlag, Berlin, 95 ppGoogle Scholar
  45. Kircher MF, Mahmood U, King RS, Weissleder R, Josephson L (2003) A multimodal nanoparticle for preoperative Magnetic Resonance Imaging and intraoperative optical brain tumor delineation. Cancer Res 63:8122–8125PubMedGoogle Scholar
  46. Kong G, Braun RD, Dewhirst MW (2001) Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature. Cancer Res 61:3027PubMedGoogle Scholar
  47. Konn D, Gowland P, Bowtell R (2003) MRI detection of weak magnetic fields due to an extended current dipole in a conducting sphere: A model for direct detection of neuronal currents in the brain. Magn Reson Med 50(1):40–49. doi:10.1002/mrm.10494 PubMedCrossRefGoogle Scholar
  48. Kraus RH, Wright B (2007) Magnetic nanoparticles in cancer diagnosis and hyperthermic treatment. In: Labhasetwar V, Leslie-Pelecky DL (eds) Biomedical applications of nanotechnology, chap 3. Wiley, Hoboken, NJ, pp 65–82CrossRefGoogle Scholar
  49. Krause W, Hackmann-Schlichter N, Maier FK, Müller R (2000) Dendrimers in diagnostics. In: Topics in current chemistry. Dendrimers II architecture, nanostructure and supramolecular chemistry, vol 210. Springer, Berlin, pp 261–308Google Scholar
  50. Kussman BD, Mulkern RV, Holzman RS (2004) IIatrogenic hyperthermia during cardiac Magnetic Resonance Imaging. Anesth Analg 99:1053–1055. doi:10.1213/01.ANE.0000133911.79161.AF PubMedCrossRefGoogle Scholar
  51. Lanza GM, Winter PM, Caruthers SD, Morawski AM, Schmieder AH, Crowder KC, Wickline SA (2004) Magnetic resonance molecular imaging with nanoparticles. J Nucl Cardiol 11:733–743. doi:10.1016/j.nuclcard.2004.09.002 PubMedCrossRefGoogle Scholar
  52. Larach MG, Localio AR, Allen GC, Denborough MA, Ellis FR, Gronert GA et al (1994) A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology 80:771–779. doi:10.1097/00000542-199404000-00008 PubMedCrossRefGoogle Scholar
  53. Lauffer RB (1987) Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem Rev 87:901–927. doi:10.1021/cr00081a003 CrossRefGoogle Scholar
  54. Le Bihan DL, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171:853–857PubMedGoogle Scholar
  55. LeBihan D, Hoult DI, Levin RL (1990) Hyperthermia system combined with a magnetic resonance imaging unit. Med Phys 17(5):855–860. doi:10.1118/1.596477 PubMedCrossRefGoogle Scholar
  56. Lewin JS, Conell CF, Duerk JL, Chung YC, Clampitt ME, Spesak J, Gazelle GS et al (1998) Interactive MRI-guided radiofrequency interstitial thermal ablation of abdominal tumors: Clinical trial for evaluation of safety and feasibility. J Magn Reson Imaging 8:40–47. doi:10.1002/jmri.1880080112 PubMedCrossRefGoogle Scholar
  57. Maqueda RJ, Wurden GA, Terry JL, Stillerman JA (2000) The new infrared imaging system on Alcator C-Mod. Rev Sci Instrum 70:734–737. doi:10.1063/1.1149496 ADSCrossRefGoogle Scholar
  58. Mark D, Hurwitz MD (1999) Hyperthermia for prostate cancer: a review. Prostate J 1(4):174–178. doi:10.1046/j.1525-1411.1999.14001.x CrossRefGoogle Scholar
  59. Martina MS, Fortin JP, Menager C, Clement O, Barratt G, Grabielle-Madelmont C, Gazeau F et al (2005) Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc 127:10676–10685. doi:10.1021/ja0516460 PubMedCrossRefGoogle Scholar
  60. Maswadi SM, Dodd SJ, Gao JH, Glickman RD (2004) Temperature mapping of laser-induced hyperthermia in an ocular phantom using magnetic resonance thermography. J Biomed Opt 9(4):711–718. doi:10.1117/1.1751399 PubMedCrossRefGoogle Scholar
  61. Matlachov AN, Volegov PL, Espy MA, Kraus RH (2004) SQUID detected NMR in microtesla magnetic fields. J Magn Reson 170:1–7. doi:10.1016/j.jmr.2004.05.015 PubMedADSCrossRefGoogle Scholar
  62. Matsuki H, Satoh T, Murakami K, Hoshino T, Yanada T, Kikuchi S (1990) Local hyperthermia based on soft heating method utilizing temperature-sensitive ferrite rod. IEEE Trans Magn 26(5):1551–1553. doi:10.1109/20.104442 ADSCrossRefGoogle Scholar
  63. McDermott R, Trabesinger AH, Muck M, Hahn EL, Pines A, Clarke J (2002) Liquid-state NMR and scalar coupling in microtesla magnetic fields. Science 295:2247–2249. doi:10.1126/science.1069280 PubMedADSCrossRefGoogle Scholar
  64. McDermott R, Kelso N, Lee SK, Mossle M, Muck M, Myers W, ten Haken B, Seton HC et al (2004) SQUID-detected magnetic resonance imaging in microtesla magnetic fields. J Low Temp Phys 135:793–821. doi:10.1023/B:JOLT.0000029519.09286.c5 ADSCrossRefGoogle Scholar
  65. McFerrin MB, Sontheimer H (2006) Optical and MRI multifunctional nanoprobe for targeting gliomas. Neuron Glia Biol 2(1):39–49. doi:10.1017/S1740925X06000044 PubMedCrossRefGoogle Scholar
  66. Minamimura T, Sato H, Kasaoka S, Saito T, Ishizawa S, Takemori S, Tazawa K, Tsukada K (2000) Tumour regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite incorporated microspheres in rats. Int J Oncol 16:1153–1158PubMedGoogle Scholar
  67. Moroz P, Jones SK, Gray BN (2002a) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284. doi:10.1080/02656730110108785 CrossRefGoogle Scholar
  68. Moroz P, Jones SK, Gray BN (2002b) Tumor response to aterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol 80:149–156. doi:10.1002/jso.10118 PubMedCrossRefGoogle Scholar
  69. Mulkern RV, Chung AH, Jolesz FA, Hynynen K (1997) Temperature monitoring of ultrasonically heated muscle with RARE chemical shift imaging. Med Phys 24(12):1899–1906. doi:10.1118/1.598103 PubMedCrossRefGoogle Scholar
  70. Naruse S, Higuchi T, Horikawa Y, Tanaka C (1986) Radiofrequency hyperthermia with successive monitoring of its effects on tumors using NMR spectroscopy. Proc Natl Acad Sci USA 83(21):8343–8347. doi:10.1073/pnas.83.21.8343 PubMedADSCrossRefGoogle Scholar
  71. Nigavekar SS, Sung LY, Llanes M, El-Jawahri A, Lawrence TS, Becker CW, Balogh L, Khan MK (2004) Dendrimer nanoparticle organ/tumor distribution. Pharm Res 21(3):476–483. doi:10.1023/ PubMedCrossRefGoogle Scholar
  72. Oh P, Borgström P, Witkiewicz H, Li Y, Borgström BJ, Chrastina A, Iwata K, Zinn KR, Baldwin R, Testa JE, Schnitzer JE (2007) Live dynamic imaging of caveolae pumping targeted antibody rapidly and specifically across endothelium in the lung. Nat Biotechnol 25(3):327–337. doi:10.1038/nbt1292 PubMedCrossRefGoogle Scholar
  73. Palussière J, Salomir R, Bail BL, Fawaz R, Quesson B, Grenier N, Moonen CTW (2002) Feasibility of MR-guided focused ultrasound with real-time temperature mapping and continuous sonication for ablation of VX2 carcinoma in rabbit thigh. Magn Reson Med 47(6):1065–1072. doi:10.1002/mrm.10176 My paperCrossRefGoogle Scholar
  74. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36:167–181. doi:10.1088/0022-3727/36/13/201 ADSCrossRefGoogle Scholar
  75. Parekh K, Upadhyay RV, Belova L, Rao KV (2006) Ternary monodispersed Mn0.5Zn0.5Fe2O4 ferrite nanoparticles: preparation and magnetic characterization. Nanotechnology 17:5970–5975. doi:10.1088/0957-4484/17/24/011 ADSCrossRefGoogle Scholar
  76. Peller M (2003) Hyperthermia induces T1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo. Magn Reson Imaging 21(5):545–551. doi:10.1016/S0730-725X(03)00070-5 PubMedCrossRefGoogle Scholar
  77. Plassat V, Martina MS, Barratt G, Ménager C, Lesieur S (2007) Sterically stabilized superparamagnetic liposomes for MR imaging and cancer therapy: pharmacokinetics and biodistribution. Int J Pharm 344(1–2):118–127. doi:10.1016/j.ijpharm.2007.05.018 PubMedCrossRefGoogle Scholar
  78. Plotkin M, Gneveckow U, Meier-Hauff K, Amthauer H, Feußner A, Denecke T, Gutberlet M, Jordan A, Felix R, Wust P (2006) Int J Hyperthermia 22(4):319–325 . doi:10.1080/02656730600734128 Google Scholar
  79. Ponce AM, Viglianti BL, Yu D, Yarmolenko PS, Michelich CR, Woo J, Bally MB, Dewhirst MW (2007) Magnetic Resonance Imaging of temperature-sensitive liposome release: drug dose painting and antitumor effects. J Natl Cancer Inst 99(1):53–63PubMedCrossRefGoogle Scholar
  80. Rein PM, Hagmann M, Turner P, Issels R, Reiser M (2005) Ferrite-enhanced MRI monitoring in hyperthermia. Magn Reson Imaging 23(10):1017–1020. doi:10.1016/j.mri.2005.09.008 CrossRefGoogle Scholar
  81. Rinck PA, Muller RN (1999) Field strength and dose dependence of contrast enhancement by gadolinium based MR contrast agents. Eur Radiol 9:908–1004. doi:10.1007/s003300050781 CrossRefGoogle Scholar
  82. Ritman EL (2002) Molecular imaging in small animals—roles for micro-CT. J Cell Biochem 87(39):116–124. doi:10.1002/jcb.10415 CrossRefGoogle Scholar
  83. Robins HI, Longo WL, Steeves RA, Cohen JD, Schmitt CL, Neville AJ, O’Keefe S, Lagoni R, Riggs C (1990) Adjunctive therapy (whole body hyperthermia versus lonidamine) to total body irradiation for the treatment of favorable B-cell neoplasms: a report of two pilot clinical trials and laboratory investigations. Int J Radiat Oncol Biol Phys 18(4):909–920PubMedGoogle Scholar
  84. Romanus E, Huckel M, Gross C, Prass S, Weitschies W, Brauer R, Weber P (2002) Magnetic nanoparticles relaxation measurement as a novel tool for in vivo diagnostics. J Magn Magn Mater 252:387–389. doi:10.1016/S0304-8853(02)00645-5 ADSCrossRefGoogle Scholar
  85. Romanus E, Berkov DV, Prass S, Grob C, Weitschies W, Weber P (2003) Determination of energy barrier distributions of magnetic nanoparticles by temperature dependent magnetorelaxometry. Nanotechnology 14:1251–1254. doi:10.1088/0957-4484/14/12/003 ADSCrossRefGoogle Scholar
  86. Seegenschmiedt MH, Brady LW, Sauer R (1990) Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol 13:352. doi:10.1097/00000421-199008000-00016 PubMedCrossRefGoogle Scholar
  87. Settecase F, Sussman MS, Roberts TPL (2007) A new temperature-sensitive contrast mechanism for MRI: Curie temperature transition-based imaging. Contrast Media Mol Imaging 2:50–54. doi:10.1002/cmmi.120 PubMedCrossRefGoogle Scholar
  88. Sharma R, Kwon S (2007) New applications of nanoparticles in cardiovascular imaging. J Exp Nanosci 2(1):115–123. doi:10.1080/17458080601101176 CrossRefGoogle Scholar
  89. Shimura M, Ishizaka Y, Yuo A, Hatake K, Oshima M, Sasaki T, Takaku F (1997) Characterization of room temperature induced apoptosis in HL-60. FEBS Lett 417(3):379–384. doi:10.1016/S0014-5793(97)01327-6 PubMedCrossRefGoogle Scholar
  90. Shuai J, Parker I (2005) Optical single-channel recording by imaging Ca2+ flux through individual ion channels: theoretical considerations and limits to resolution. Cell Calcium 37(4):283–299. doi:10.1016/j.ceca.2004.10.008 PubMedCrossRefGoogle Scholar
  91. Silver FH (2006) Mechanochemical transduction and its role in biology. In: Mechanosensing and mechanochemical transduction in extracellular matrix biological, chemical, engineering, and physiological aspects, chap 10, vol XVI. Springer Verlag, London, pp 262–270Google Scholar
  92. Smith CR, Sabatino DR, Praisner TJ (2001) Temperature sensing with thermochromic liquid crystals. Exp Fluids 30:190–201. doi:10.1007/s003480000154 CrossRefGoogle Scholar
  93. Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, Hoebeke J et al (2005) Folate-conjugated iron-oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physiochemical characterization, and in vitro experiments. Bioconj Chem 16:1181–1188. doi:10.1021/bc050050z CrossRefGoogle Scholar
  94. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G, Reynolds F (2005) Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54:718–724. doi:10.1002/mrm.20617 PubMedCrossRefGoogle Scholar
  95. Steeves RA (1992) Hyperthermia in cancer therapy: where are we today and where are we going? Bull N Y Acad Med 68(2):341–350PubMedGoogle Scholar
  96. Sulliven DM, Ben-Yosef R, Kapp DS (1993) Stanford 3D hyperthermia treatment planning system. Technical review and clinical summary. Int J Hyperthermia 9(5):627–643. doi:10.3109/02656739309032052 CrossRefGoogle Scholar
  97. Sutariya GM, Vincent D, Bayard B, Upadhyay RV, Noyel G, Mehta RV (2003) Magnetic DC field and temperature dependence on complex microwave magnetic permeability of ferrofluids: effect of constituent elements of substituted Mn ferrite. J Magn Magn Mater 260(1–2):42–47. doi:10.1016/S0304-8853(01)01369-5 ADSCrossRefGoogle Scholar
  98. Tanaka K, Ito K, Kobayashi T, Kawamura T, Shimada S, Matsumoto K, Saida T, Honda H (2005) Intratumoral injection of immature dendrite cells enhances antitumor effect of hyperthermia using magnetic nanoparticles. Int J Cancer 116:624–633. doi:10.1002/ijc.21061 PubMedCrossRefGoogle Scholar
  99. Turner JL, Pan D, Plummer R, Chen Z, Whittaker AK, Wooley KL (2005) Synthesis of gadolinium-labeled shell-crosslinked nanoparticles for magnetic resonance imaging applications. Adv Funct Mater 15(8):1248–1254. doi:10.1002/adfm.200500005 CrossRefGoogle Scholar
  100. Upadhyay RV, Mehta RV, Parekh K, Shrinivas D, Pant RP (1999). J Magn Magn Mater 201:129–132. doi:10.1016/S0304-8853(99)00034-7 Google Scholar
  101. Uskoković W, Košak A, Drofenik M, Drofenik M (2006) Preparation of silica-coated lanthanum-strontium manganite particles with designable Curie Point, for application in hyperthermia treatments. Int J Appl Cer Tech 3(2):134–143. doi:10.1111/j.1744-7402.2006.02065.x CrossRefGoogle Scholar
  102. van der Zee J (2002) Heating the patient: a promising approach? Ann Oncol 13:1173–1184. doi:10.1093/annonc/mdf280 PubMedCrossRefGoogle Scholar
  103. van Rijswijk CS, Geirnaerdt MJA, Hogendoorn PCW, Peterse JL, van Coevorden F, Taminiau AHM, Tollenaar RAEM, Kroon BBR, Bloem JL (2003) Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial results. Eur Radiol 13(8):1849–1858. doi:10.1007/s00330-002-1785-4 PubMedCrossRefGoogle Scholar
  104. Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N et al (2005) Optical and MRI multifunctional nanoprobe for targeting gliomas. Nano Lett 5:1003–1008. doi:10.1021/nl0502569 PubMedCrossRefADSGoogle Scholar
  105. Villa A, Gill H, McCallion O, Alonso M (2004) Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. J Control Release 98:231–244. doi:10.1016/j.jconrel.2004.04.026 CrossRefGoogle Scholar
  106. Visaria RK, Griffin RJ, Williams BW, Ebbini ES, Paciotti GF, Song CW, Bischof JC (2006) Enhancement of tumor thermal therapy using gold nanoparticle–assisted tumor necrosis factor-α delivery. Mol Cancer Ther 5:1014–1020. doi:10.1158/1535-7163.MCT-05-0381 PubMedCrossRefGoogle Scholar
  107. Volegov P, Matlachov AN, Espy MA, George JS, Kraus RH Jr (2004) Simultaneous magnetoencephalography and SQUID detected nuclear MR in microtesla magnetic fields. Magn Reson Med 3(52):467–470. doi:10.1002/mrm.20193 CrossRefGoogle Scholar
  108. Wijaya A, Brown KA, Alper JD, Hamad-Schifferli K (2007) Magnetic field heating study of Fe-doped Au nanoparticles. J Magn Magn Mater 309(1):15–19. doi:10.1016/j.jmmm.2006.04.014 ADSCrossRefGoogle Scholar
  109. Wlodarczyk W, Boroschewski R, Hentschel M, Wust P, Mönich G, Felix R (2005) Three-dimensional monitoring of small temperature changes for therapeutic hyperthermia using MR. J Magn Reson Imaging 8(1):165–174. doi:10.1002/jmri.1880080129 CrossRefGoogle Scholar
  110. Wright BL, Barker RA (2007) Established and emerging therapies for Hutington disease. Curr Mol Med 7(6):579–587PubMedCrossRefGoogle Scholar
  111. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, Felix R, Schlag PM (2002) Hyperthermia in combined treatment of cancer. Lancet Oncol 3:487–497. doi:10.1016/S1470-2045(02)00818-5 PubMedCrossRefGoogle Scholar
  112. Ying-ying G, Tan Xiao-ping T, Shu-quan L, Shang-bin S (2004) Effects of La3+ doping on MnZn ferrite nanoscale particles synthesized by hydrothermal method. J Cent S Univ Tech 11(2):113–228. doi:10.1007/s11771-004-0024-3 CrossRefGoogle Scholar
  113. Yu SB, Watson AD (1999) Metal-based X-ray Contrast Media. Chem Rev 99(9):2353–2378. doi:10.1021/cr980441p PubMedCrossRefGoogle Scholar
  114. Zbigniew J, Kurcok P, Walach W, Janeczek H, Radecka I (1993) Synthesis of ethylene glycol-l-lactide block copolymers. Makromol Chem 194:1681–1689. doi:10.1002/macp.1993.021940616 CrossRefGoogle Scholar
  115. Zhao M, Beauregard DA, Loizou L, Davletov B, Brindle KM (2001) Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat Med 7:1241–1243. doi:10.1038/nm1101-1241 PubMedCrossRefGoogle Scholar
  116. Zhu D, Lu W, Weng Y, Cui H, Luo Q (2007) Monitoring thermal-induced changes in tumor blood flow and microvessels with laser speckle contrast imaging. Appl Opt 46(10):1911–1917. doi:10.1364/AO.46.001911 PubMedADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Center of NanobioscienceUniversity of North CarolinaGreensboroUSA
  2. 2.Center of Nanomagnetics and BiotechnologyFlorida State UniversityTallahasseeUSA

Personalised recommendations