Gold nanoparticles modified GC electrodes: electrochemical behaviour dependence of different neurotransmitters and molecules of biological interest on the particles size and shape

  • D. Caschera
  • F. Federici
  • D. Zane
  • F. Focanti
  • A. Curulli
  • G. Padeletti
Research Paper

Abstract

Gold colloidal nanoparticles (AuNps), synthesized by gold chloride hydrate (HAuCl4) chemical reduction were used to realize a modified glassy carbon electrode (GCE). Different shapes and sizes were observed, varying the molar ratio of HAuCl4 and polyvinylpyrrolidone (PVP). The electrochemical behaviour of different neurotransmitters and molecules of biological interest (dopamine, caffeic acid, catechol, uric acid, epinephrine and serotonin) were investigated by cyclic voltammetry (CV) at the AuNps modified GCE and a dependence of the electrochemical response on the size and the shape of the particles was observed. The electrochemical responses were stable during time with a generic decreasing of the peak current after 10 days ranging from 5–10% for catechol, uric acid and serotonine to 10–15% for the other analytes. A study on the electrochemical interface of modified electrodes was also carried out by means of electrochemical impedance spectroscopy (EIS).

Keywords

Gold nanoparticles AuNp modified electrode Neurotransmitters Colloids Nanobiotechnology 

References

  1. Ahlskog JE, Uitti RJ, Tyce GM et al (1996) Plasma catechols and monoamine oxidase metabolites in untreated Parkinson’s and Alzheimer’s diseases. J Neurol Sci 136:162–168. doi:10.1016/0022-510X(95)00318-V CrossRefPubMedGoogle Scholar
  2. Bard AJ, Faulkner LR (1980) Techniques based on concepts of impedance. In: Electrochemical methods: fundamentals and applications, Chapter 9. Wiley, New York, pp 316–330Google Scholar
  3. Bonet F, Delmas V, Grugeon S, Herrera Urbina R, Silvert P-Y, Tekaia-Elhsissen K (1999) Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. Nanostruct Mater 11:1277–1284CrossRefGoogle Scholar
  4. Boukamp BA (1986) A non-linear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ion 20:31–44. doi:10.1016/0167-2738(86)90031-7 CrossRefGoogle Scholar
  5. Brown KR, Walter DG, Natan MJ (2000) Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size shape. Chem Mater 12:306–313CrossRefGoogle Scholar
  6. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102. doi:10.1021/cr030063a CrossRefPubMedGoogle Scholar
  7. Chang SS, Shih CW, Chen CD, Lai WC, Wang C (1999) The shape transition of gold nanorods. Langmuir 15:701–709. doi:10.1021/la980929l CrossRefGoogle Scholar
  8. Chimi H, Cillard J, Cillard P, Rahmani M (1991) Peroxyl and hydroxyl radical scavenging activity of some natural phenolic antioxidants. J Am Oil Chem Soc 68:307–312. doi:10.1007/BF02657682 CrossRefGoogle Scholar
  9. Creighton JA, Eadon DG (1991) Ultraviolet–visible absorption spectra of the colloidal metallic elements. J Chem Soc Faraday Trans 87:3881–3891. doi:10.1039/ft9918703881 CrossRefGoogle Scholar
  10. Curulli A, Valentini F, Padeletti G, Viticoli M, Caschera D, Palleschi G (2005) Smart (nano) materials: TiO2 nanostructured films to modify electrodes for assembling of new electrochemical probes. Sensors Actuators B 111–112:526–531 (and references cited therein). doi:10.1016/j.snb.2005.03.084
  11. Ducamp-Sanguesa C, Herrera-Orbina R, Figlarz M (1992) Synthesis and characterization of fine and monodisperse silver particles of uniform shape. J Solid State Chem 100:272–280. doi:10.1016/0022-4596(92)90101-Z CrossRefADSGoogle Scholar
  12. Esumi K, Pal T (2005) Preparation of nanosized gold particles in a biopolymer using UV photoactivation. J Colloid Interface Sci 288:396–401. doi:10.1016/j.jcis.2005.03.048 CrossRefPubMedGoogle Scholar
  13. Fievet F, Lagier JP, Blin B et al (1989) Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion 32(33):198–205. doi:10.1016/0167-2738(89)90222-1 CrossRefGoogle Scholar
  14. Fujimoto T, Terauchi S, Umehara H, Kojima I, Henderson W (2001) Sonochemical Preparation of Single-Dispersion Metal Nanoparticles from Metal Salts. Chem Mater 13:1057–1060. doi:10.1021/cm000910f CrossRefGoogle Scholar
  15. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis Spectra. Anal Chem 79:4215–4221. doi:10.1021/ac0702084 CrossRefPubMedGoogle Scholar
  16. Handley DA (1989) Colloidal gold: principles, methods and applications, vol 1. Academic Press, New York, pp 494–513 Chap.18Google Scholar
  17. Huang H, Yang X (2005) One-step, shape control synthesis of gold nanoparticles stabilized by 3-thiopheneacetic acid. Colloids Surf A Physicochem Eng Asp 255:11–17. doi:10.1016/j.colsurfa.2004.12.020 CrossRefGoogle Scholar
  18. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 14:1389–1393CrossRefGoogle Scholar
  19. Jian-Shan Y, Ying W, Wei DZ, Leong MG, Guo QX, Fwu-Shan S (2003) Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode. Electroanalysis 15:1693–1698. doi:10.1002/elan.200302740 CrossRefGoogle Scholar
  20. Kaczmarek H, Kaminska A, Swiatek M, Rabek JF (1998) Photo-oxidative degradation of some water-soluble polymers in the presence of accelerating agents. Angew Makromol Chem 261–262:109–121. doi:10.1002/(SICI)1522-9505(19981201)261-262:1<109::AID-APMC109>3.0.CO;2-SCrossRefGoogle Scholar
  21. Kopin IJ (1985) Catecholamine metabolism: basic aspects and clinical significance. J Pharmacol Rev 37:333–364Google Scholar
  22. Li C, Cai W, Kan C, Fu G, Zhang L (2004) Ultrasonic solvent induced morphological change of Au colloids. Mater Lett 58:196–199. doi:10.1016/S0167-577X(03)00444-0 CrossRefGoogle Scholar
  23. Liz- Marzan LM (2004) Nanometals: formation and color. Mater Today 7:26–31Google Scholar
  24. Mandal M, Ghosh SK, Kundu S, Esumi K, Pal T (2002) UV Photoactivation for size and shape controlled synthesis and coalescence of gold nanoparticles in micelles. Langmuir 18:7792–7797CrossRefGoogle Scholar
  25. Mie G (1908) Beitraege zur Optik Trueber Medien, Speziell-Kolloidaler Metalosungen. Ann Phys 25:377–445CrossRefGoogle Scholar
  26. Nakayama T, Kuno T, Hiramitsu M, Osawa T, Kawakiehi S (1993) Antioxidative and prooxidative of caffeic acid toward H2O2-induced DNA strand breakage dependent on the state of the Fe ion in the medium. Biosci Biotechnol Biochem 57:174–176CrossRefGoogle Scholar
  27. Olanow CW (1990) Oxidation reactions in Parkinson’s disease. Neurology 40:32–37PubMedGoogle Scholar
  28. Porel S, Singh S, Radhakrishnan TP (2005) Polygonal gold nanoplates in a polymer matrix. Chem Comm 2387–2389Google Scholar
  29. Puntes VF, Krishnan K, Alivisatos AP (2002) Synthesis of colloidal cobalt nanoparticles with controlled size and shapes. Top Catal 19(2):145–148CrossRefGoogle Scholar
  30. Robinson HM, Hood SD (2007) Social anxiety disorder-a review of pharmacological treatments. Curr Psychiatry Rev 3(2):95–122CrossRefGoogle Scholar
  31. Sau TK, Murphy CJ (2005) Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 21:2923–2929CrossRefPubMedGoogle Scholar
  32. Shahrokhian S, Hamzehloei A (2003) Electrochemical oxidation of catechol in the presence of 2-thiouracil: application to electro-organic synthesis. Electrochem Commun 5:706–710CrossRefGoogle Scholar
  33. Shao Y, Jin Y, Dong S (2004) Synthesis of gold nanoplates by aspartate reduction of gold chloride. ChemComm, 1104–1105Google Scholar
  34. Shen-Ming C, Kuo-Tzu P (2003) The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate films. J Electroanal Chem 547:179–189CrossRefGoogle Scholar
  35. Sionkowska A, Wisniewski M, Skopiuska J, Vicini S, Marsani E (2005) The influence of UV irradiation on the mechanical properties of chitosan/poly(vinyl pyrrolidone) blends. Polym Degrad Stab 88:261–267CrossRefGoogle Scholar
  36. Sotonyi P, Merkely B, Hubay M, Jaray J, Zima E, Kovacs A, Szentmariay I (2004) Comparative study on cardiotoxic effect of tinuvin 770: a light stabilizer of medical plastics in rat model. Toxicol Sci 77:368–374CrossRefPubMedGoogle Scholar
  37. Staszewska DU (1983) The oxidation of poly(vinyl pyrrolidone) with Ce(IV). Angew Makromol Chem 118:1–17CrossRefGoogle Scholar
  38. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179CrossRefPubMedADSGoogle Scholar
  39. Tan Y, Dai X, Li Y, Zhu D (2003) Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant—potassium bitartrate. J Mater Chem 13:1069–1075CrossRefGoogle Scholar
  40. Valentini F, Orlanducci S, Tamburri E, Terranova ML, Curulli A, Palleschi G (2005) Single-walled carbon nanotubes on tungsten wires: a new class of microelectrochemical sensors. Electroanalysis 17(1):28–37CrossRefGoogle Scholar
  41. Wang J, Li M, Shi Z, Li N, Gu Z (2001) Electrocatalytic oxidation of 3,4-dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes. Electrochim Acta 47:651–657CrossRefGoogle Scholar
  42. Wang Z, Liu D, Dong S (2001) In situ infrared spectroelectrochemical studies on adsorption and oxidation of nucleic acids at glassy carbon electrode. Bioelectrochemistry 53:175–181CrossRefPubMedGoogle Scholar
  43. Wang S, Yan J, Chen L (2005) Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates. Mater Lett 59:1383–1386CrossRefGoogle Scholar
  44. Zhang J, Bond AM (2003) Conditions required to achieve the apparent equivalence of adhered solid- and solution-phase voltammetry for ferrocene and other redox-active solids in ionic liquids. Anal Chem 75:2694–2702CrossRefPubMedGoogle Scholar
  45. Zhou Y, Wang CY, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation technique for shape-controlled synthesis of gold nanoparticles at room temperature. Chem Mater 11:2310–2312CrossRefGoogle Scholar
  46. Zhou QF, Bao JC, Xu Z (2002) Shape-controlled synthesis of nanostructured gold by a protection–reduction technique. J Mater Chem 12:384–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • D. Caschera
    • 1
  • F. Federici
    • 1
  • D. Zane
    • 2
  • F. Focanti
    • 2
  • A. Curulli
    • 2
  • G. Padeletti
    • 1
  1. 1.ISMN-CNRMonterotondo Scalo, RomaItaly
  2. 2.ISMN-CNRRomeItaly

Personalised recommendations