Journal of Nanoparticle Research

, Volume 11, Issue 4, pp 757–766 | Cite as

Risk-based classification system of nanomaterials

  • Tommi Tervonen
  • Igor Linkov
  • José Rui Figueira
  • Jeffery Steevens
  • Mark Chappell
  • Myriam Merad
Research Paper

Abstract

Various stakeholders are increasingly interested in the potential toxicity and other risks associated with nanomaterials throughout the different stages of a product’s life cycle (e.g., development, production, use, disposal). Risk assessment methods and tools developed and applied to chemical and biological materials may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material due to variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as to promote the safe handling and use of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. Stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different ecological risk categories based on our current knowledge of nanomaterial physico-chemical characteristics, variation in produced material, and best professional judgments. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.

Keywords

Nanotechnology Risk assessment Toxicology Decision analysis Governance 

References

  1. Auffan M, Rose J, Orsiere T, De Meo M, Achouak W, Chaneac C, Joliver J-P, Thill A, Spalla O, Zeyons O, Maison A, Labille J, Hazeman J-L, Proux O, Briois V, Flank A-M, Botta A, Wiesner MR, Bottero J-Y (2008) Surface reactivity of nano-oxides and biological impacts. Nanoparticles in the Environment: Implications and Applications, Centro Stefano Fracnscini, Monte Verita, AsconaGoogle Scholar
  2. Belton V, Stewart TJ (2002) Multiple criteria decision analysis—an integrated approach. Kluwer Academic Publishers, DordrechtGoogle Scholar
  3. Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manag Assoc 55:708–746PubMedGoogle Scholar
  4. Borm P, Müller-Schulte D (2006) Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine 1(2):235–249. doi:10.2217/17435889.1.2.235 PubMedCrossRefGoogle Scholar
  5. Borm P, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3(11). doi:10.1186/1743-8977-3-11
  6. Bortoleto GG, Borges SSO, Bueno MIMS (2007) X-ray scattering and multivariate analysis for classification of organic samples: a comparative study using Rh tube and synchrotron radiation. Anal Chim Acta 595:38–42. doi:10.1016/j.aca.2006.11.067 PubMedCrossRefGoogle Scholar
  7. Bowden JW, Posner AM, Quirk JP (1977) Ionic adsorption on variable charge mineral surfaces. Theoretical-charge development and titration curves. Aust J Soil Res 15:121–136Google Scholar
  8. Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann M (2007) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419. doi:10.1093/toxsci/kfi256 CrossRefGoogle Scholar
  9. Chappell MA, George AJ, Porter BE, Price CL, Dontsova KM, Kennedy AJ, Steevens JA (2008) Surfactive properties of dissolved soil humic substances for stabilizing multi-walled carbon nanotubes dispersions. Nanoparticles in the Environment: Implications and Applications, Centro Stefano Franscini, Monte Verita, AsconaGoogle Scholar
  10. Chen Q, Saltiel C, Manickavasagam S, Schadler LS, Siegel RW, Yang H (2004) Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension. J Colloid Interface Sci 280:91–97. doi:10.1016/j.jcis.2004.07.028 PubMedCrossRefGoogle Scholar
  11. Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18. doi:10.1021/nl0347334 CrossRefADSGoogle Scholar
  12. Erbs JJ, Berquo TS, Gilbert B, Jentzsch TL, Banerjee SK, Penn RL (2008) Reactivity of iron and iron oxide nanoparticles. Nanoparticles in the Environment: Implications and Applications, Centro Stefano Franscini, Monte Verita, AsconaGoogle Scholar
  13. Evangelou VP (1998) Environmental soil and water chemistry: principles and applications. Wiley, New YorkGoogle Scholar
  14. Figueira J, Greco S, Ehrgott M (eds) (2005a) Multiple criteria decision analysis: state of the art surveys. Springer Science+Business Media, Inc, New YorkMATHGoogle Scholar
  15. Figueira J, Mousseau V, Roy B (2005b) ELECTRE methods. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis: state of the art surveys. Springer Science+Business Media, Inc, New York Chap 4Google Scholar
  16. Gopee NV, Roberts DW, Webb P, Cozart CR, Siitonen PH, Warbritton AR, Yu WW, Colvin VL, Walker NJ, Howard PC (2007) Migration of interdermally injected quantum dots to sentinel organs in mice. Toxicol Sci 98(1):249–257. doi:10.1093/toxsci/kfm074 PubMedCrossRefGoogle Scholar
  17. Grabinski C, Hussain S, Lafdi K, Braydich-Stolle L, Schlager J (2007) Effect of particle dimension on biocompatibility of carbon nanomaterials. Carbon 45:2828–2835. doi:10.1016/j.carbon.2007.08.039 CrossRefGoogle Scholar
  18. Gwinn M, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114(2):1818–1825PubMedGoogle Scholar
  19. Hofstetter TB, Heijman CG, Haderlein SB, Holliger C, Schwarzenbach RP (1999) Complete reduction of TNT and other (poly)nitroaromatic compounds under iron-reducing subsurface conditions. Environ Sci Technol 33:1479–1487. doi:10.1021/es9809760 CrossRefGoogle Scholar
  20. Hofstetter TB, Schwarzenbach RP, Haderlein SB (2003) Reactivity of Fe(II) species associated with clay minerals. Environ Sci Technol 37:519–528. doi:10.1021/es025955r PubMedCrossRefGoogle Scholar
  21. ISO, International Organization for Standardization (2008) The ISO technical specification 27687 nanotechnologies—terminology and definitions for nano-objects—nanoparticle, nanofibre and nanoplate, GenevaGoogle Scholar
  22. Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247. doi:10.1021/es035157g PubMedCrossRefGoogle Scholar
  23. Kashiwada S (2006) Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114:1697–1702PubMedGoogle Scholar
  24. Kennedy A, Hull M, Steevens J, Dontsova K, Chappell M, Gunter J, Weiss C (2008) Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environ Toxicol Chem 27(9):1932–1941. doi:10.1897/07-624.1 PubMedCrossRefGoogle Scholar
  25. Kreyling W, Semmler-Behnke M, Möller W (2006) Health implications of nanoparticles. J Nanomater Res 8:543–562. doi:10.1007/s11051-005-9068-z CrossRefGoogle Scholar
  26. Linkov I, Satterstrom K (2008) Nanomaterial risk assessment and risk management: review of regulatory frameworks. In: Linkov I, Ferguson E, Magar V (eds) Real time and deliberative decision making: application to risk assessment for non-chemical stressors. Springer, Amsterdam, pp 129–158Google Scholar
  27. Linkov I, Satterstrom K, Kiker G, Batchelor C, Bridges T (2006) From comparative risk assessment to multi-criteria decision analysis and adaptive management: recent developments and applications. Environ Int 32:1072–1093. doi:10.1016/j.envint.2006.06.013 PubMedCrossRefGoogle Scholar
  28. Linkov I, Satterstrom K, Steevens J, Ferguson E, Pleus R (2007) Multi-criteria decision analysis and environmental risk assessment for nanomaterials. J Nanopart Res 9:543–554. doi:10.1007/s11051-007-9211-0 CrossRefGoogle Scholar
  29. Medina C, Santos-Martinez M, Radomski A, Corrigan O, Radomski M (2007) Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 150:552–558. doi:10.1038/sj.bjp.0707130 PubMedCrossRefGoogle Scholar
  30. Medinsky MA, Valentine JL (2001) Chapter 7. Toxicokinetics. In: Klaassen CD (ed) Casarett and Doull’s toxicology, 6th edn. McGraw-Hill, New York, p 230Google Scholar
  31. Merad MM, Verdel T, Roy B, Kouniali S (2004) Use of multi-criteria decision-aids for risk zoning and management of large area subjected to mining-induced hazards. Tunn Undergr Space Technol 19(2):125–138. doi:10.1016/S0886-7798(03)00106-8 CrossRefGoogle Scholar
  32. Murr LE, Garza KM, Soto KF, Carrasco A, Powell TG, Ramirez DA, Guerero PA, Lopez DA, Venzor J (2005) Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Int J Environ Res Public Health 2(1):31–42PubMedCrossRefGoogle Scholar
  33. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397 PubMedCrossRefADSGoogle Scholar
  34. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839PubMedCrossRefGoogle Scholar
  35. Oberdörster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicology 1(1):2–25. doi:10.1080/17435390701314761 CrossRefGoogle Scholar
  36. Powers K, Palazuelos M, Moudgil B, Roberts S (2007) Characterization of the size, shape, and state dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51. doi:10.1080/17435390701314902 CrossRefGoogle Scholar
  37. Ryman-Rasmussen JP, Riviere JE, Monterio-Riviere NA (2006) Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91:159–165. doi:10.1093/toxsci/kfj122 PubMedCrossRefGoogle Scholar
  38. Tervonen T (2007) New directions in stochastic multicriteria acceptability analysis. Ph.D. thesis, Annales Universitatis Turkuensis AI:376, University of Turku, FinlandGoogle Scholar
  39. Tervonen T, Figueira JR (2008) A survey on stochastic multicriteria acceptability analysis methods. J Multi-Criteria Decis Anal 15(1–2):1–14. doi:10.1002/mcda.407 CrossRefGoogle Scholar
  40. Tervonen T, Lahdelma R (2007) Implementing stochastic multicriteria acceptability analysis. Eur J Oper Res 178(2):500–513. doi:10.1016/j.ejor.2005.12.037 MATHCrossRefGoogle Scholar
  41. Tervonen T, Figueira JR, Lahdelma R, Almeida Dias J, Salminen P (2009) A stochastic method for robustness analysis in sorting problems. Eur J Oper Res 191(1):236–242. doi:10.1016/j.ejor.2007.09.008 CrossRefGoogle Scholar
  42. Thomas K, Sayre P (2005) Research strategies for safety evaluation of nanomaterials, part I: evaluating the human health implications of exposure to nanoscale materials. Toxicol Sci 87(2):316–321. doi:10.1093/toxsci/kfi270 PubMedCrossRefGoogle Scholar
  43. Tsuji JS, Maynard AD, Howard PC, James JT, Lam CW, Warheit DB, Santamaria AB (2006) Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol Sci 89(1):42–50. doi:10.1093/toxsci/kfi339 PubMedCrossRefGoogle Scholar
  44. Uehara G, Gillman G (1981) The mineralogy, chemistry, and physics of tropical soils with variable charged clays. Westview Press, BoulderGoogle Scholar
  45. Unfried K, Albrecht C, Klotz L, Von Mikecz A, Grether-Beck S, Shins RPF (2007) Cellular responses to nanoparticles: target structures and mechanisms. Nanotoxicology 1:52–71. doi:10.1080/00222930701314932 CrossRefGoogle Scholar
  46. Wang Y, Li Y, Pennell KD (2008) Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands. Environ Toxicol Chem 27(9):1860–1867. doi:10.1897/08-039.1 PubMedCrossRefGoogle Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • Tommi Tervonen
    • 1
  • Igor Linkov
    • 2
  • José Rui Figueira
    • 3
    • 4
  • Jeffery Steevens
    • 5
  • Mark Chappell
    • 5
  • Myriam Merad
    • 6
  1. 1.Faculty of Economics and BusinessUniversity of GroningenGroningenThe Netherlands
  2. 2.US Army Research and Development CenterBrooklineUSA
  3. 3.CEG-IST, Centre for Management Studies, Instituto Superior TécnicoTechnical University of LisbonPorto SalvoPortugal
  4. 4.LAMSADEUniversité ParisParisFrance
  5. 5.US Army Research and Development CenterVicksburgUSA
  6. 6.Societal Management of Risks Unit/Accidental Risks DivisionINERIS BP 2Verneuil-en-HalatteFrance

Personalised recommendations