Effects of electrode film modifications on the open-circuit photovoltage in enhanced dye-sensitized solar cells

Research Paper


In this study, the open-circuit photovoltage (Voc) decay technique was used to investigate the relationship between the electrode film morphology and the open-circuit photovoltage. Results indicate that dye-sensitized solar cells (DSCs) based on ordered arrays of TiO2 nanostructures (100 nm external diameters and 20–50 nm internal diameters) generally show higher open-circuit photovoltage (Voc) values than those based on sintered TiO2 nanoparticles (20–40 nm diameters). In particular, cells based on thick nanotubules (wall thickness ≥ 45 nm in our research) and on nanorods (100 nm diameters) show particularly high Voc values, indicating slow recombination kinetics under open-circuit conditions. It can be argued that the nanorods and the thick nanotubules act like singles crystals and therefore the injected electrons in the inner TiO2 molecules are shielded from holes in the electrolyte under open-circuit conditions. The open-circuit recombination time constant of electrons accumulated in the TiO2 conduction band is therefore prolonged and resulting in high Voc values.


Nanorods Nanotubules Morphology Open-circuit Photovolgate Recombination Energy conversion 


  1. Barzykin AV, Tachiya M (2002) Mechanism of charge recombination in dye-sensitized nanocrystalline semiconductors: random flight model. J Phys Chem B 106:4356–4363. doi:10.1021/jp012957+ CrossRefGoogle Scholar
  2. Bisquert J, Zaban A, Salvador P (2002) Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. Nonequilibrium steady-state statistics and interfacial electron transfer via surface states. J Phys Chem B 106:8774–8782. doi:10.1021/jp026058c CrossRefGoogle Scholar
  3. Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) Investigation of the kinetics of the back reaction of electrons with tri-iodide in dye-sensitized nanocrystalline photovoltaic cells. J Phys Chem B 104:8916–8919. doi:10.1021/jp001185z CrossRefGoogle Scholar
  4. Fabregat-Santiago F, Mora-Seró I, Garcia-Belmonte G, Bisquert J (2003) Cyclic voltammetry studies of nanoporous semiconductors. Capacitive and reactive properties of nanocrystalline TiO2 electrodes in aqueous electrolyte. J Phys Chem B 107:758–768. doi:10.1021/jp0265182 CrossRefGoogle Scholar
  5. Ferrere S, Gregg BA (1998) Photosensitization of TiO2 by [FeII(2,2′-bipyridine-4,4′-dicarboxylic acid)2(CN)2]: band selective electron injection from ultra-short-lived excited states. J Am Chem Soc 120:843–844. doi:10.1021/ja973504e CrossRefGoogle Scholar
  6. Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 104:949–958. doi:10.1021/jp993220b CrossRefGoogle Scholar
  7. Hou Y, Xie P, Zhang B, Cao Y, Xiao X, Wang W (1999) Influence of the attaching group and substituted position in the photosensitization behavior of ruthenium polypyridyl complexes. Inorg Chem 38(26):6320–6322. doi:10.1021/ic990001w CrossRefGoogle Scholar
  8. Huang SY, Schlichthörl G, Nozik AJ, Grätzel M, Frank AJ (1997) Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 101:2576–2582. doi:10.1021/jp962377q Google Scholar
  9. Könenkamp R (2000) Carrier transport in nanoporous TiO2 films. Phys Rev B 61:11057–11064. doi:10.1103/PhysRevB.61.11057 CrossRefADSGoogle Scholar
  10. Kumara GRA, Kaneko S, Okuya M, Tennakone K (2002) Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a cul crystal growth inhibitor. Langmuir 18(26):10493–10495. doi:10.1021/la020421p CrossRefGoogle Scholar
  11. Liska P (1994) PhD Thesis, Praktische Aspekte der Licht-Energieumwandlung am Beispiel einer TiO2-Farbstoffzelle, Swiss Federal Institute of Technology, Lausanne, No. 1264Google Scholar
  12. Matthews D, Infelta P, Grätzel M (1996) Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes. Sol Energy Mater Sol Cells 44:119–155. doi:10.1016/0927-0248(96)00036-0 CrossRefGoogle Scholar
  13. Montanari I, Nelson J, Durrant JR (2002) Iodide electron transfer kinetics in dye-sensitized nanocrystalline TiO2 films. J Phys Chem B 106(47):12203–12210CrossRefGoogle Scholar
  14. Nazeeruddin MK, Kay A, Rodicio I, Humphrey-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J Am Chem Soc 115:6382–6390. doi:10.1021/ja00067a063 CrossRefGoogle Scholar
  15. Nelson J (1999) Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes. Phys Rev B 59:15374–15380. doi:10.1103/PhysRevB.59.15374 CrossRefADSGoogle Scholar
  16. Nusbaumer H, Moser J, Zakeeruddin SM, Nazeeruddin MK, Grätzel M (2001) CoII(dbbip)22+ Complex rivals tri-iodide/iodide redox mediator in dye-sensitized photovoltaic cells. J Phys Chem B 105:10461–10464. doi:10.1021/jp012075a CrossRefGoogle Scholar
  17. O’Regan B, Lenzmann F, Muis R, Wienke J (2002) A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and CuSCN: analysis of pore filling and IV characteristics. Chem Mater 14(12):5023–5029. doi:10.1021/cm020572d CrossRefGoogle Scholar
  18. Oskam G, Bergeron BV, Meyer GJ, Searson PC (2001) Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells. J Phys Chem B 105:6867–6873. doi:10.1021/jp004411d CrossRefGoogle Scholar
  19. Rose A (1963) Concepts in photoconductivity and allied problems. Interscience, New YorkGoogle Scholar
  20. Schlichthörl G, Huang SY, Sprague J, Frank AF (1997) Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy. J Phys Chem B 101:8141–8155. doi:10.1021/jp9714126 CrossRefGoogle Scholar
  21. Smestad G (1994) Testing of dye sensitized TiO2 solar cells II: theoretical voltage output and photoluminescence efficiencies. Sol Energy Mater Sol Cells 32:273–288. doi:10.1016/0927-0248(94)90264-X CrossRefGoogle Scholar
  22. Södergren S, Hagfeldt A, Olsson J, Lindquist SE (1994) Theoretical models for the action spectrum and the current-voltage characteristics of microporous semiconductor films in photoelectrochemical cells. J Phys Chem 98:5552–5556. doi:10.1021/j100072a023 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Computer Science, Mathematics, and PhysicsThe University of the West IndiesSt. MichaelBarbados

Personalised recommendations