Janus nanoparticles: reaction dynamics and NOESY characterization

  • Sulolit Pradhan
  • Lauren E. Brown
  • Joseph P. Konopelski
  • Shaowei Chen
Research Paper

Abstract

Janus nanoparticles were prepared by taking advantage of interfacial ligand exchange reactions of hydrophobic hexanethiolate-protected gold nanoparticles with hydrophilic 2-(2-mercaptoethoxy)ethanol (MEA). A monolayer of the particles was first formed at the air–water interface by the Langmuir technique and then deposited onto a substrate surface by the Langmuir–Blodgett method. The particle monolayer was then immersed into an aqueous solution of MEA for different periods of time. It was found that the exchange reactions occurred but were limited only to the top face of the nanoparticles and the reaction reached equilibrium in about 8 h. The resulting particles exhibited amphiphilic characters as confirmed by contact angle and UV–visible, FTIR and NMR spectroscopic measurements. Of these, the structural discrepancy between the Janus nanoparticles and bulk-exchanged particles was clearly manifested, in particular, by NOESY NMR measurements.

Keywords

Janus nanoparticles Langmuir–Blodgett Contact angle NOESY NMR Surface plasmon Exchange reactions Monolayer 

References

  1. Bella J, Borocci S, Mancini G (1999) Recognition in organized aggregates formed by a chiral amidic surfactant. Langmuir 15(23):8025–8031. doi:10.1021/la990277g CrossRefGoogle Scholar
  2. Binks BP, Clint JH, Fletcher PDI, Lees TJG, Taylor P (2006) Growth of gold nanoparticle films driven by the coalescence of particle-stabilized emulsion drops. Langmuir 22(9):4100–4103. doi:10.1021/la052752i CrossRefPubMedGoogle Scholar
  3. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  4. Brauer G (1963) Handbook of preparative inorganic chemistry. Academic Press, New YorkGoogle Scholar
  5. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc Chem Commun (7):801–802. doi:10.1039/c39940000801
  6. Chen SW (2001a) Electrochemical studies of Langmuir–Blodgett thin films of electroactive nanoparticles. Langmuir 17(21):6664–6668. doi:10.1021/la0107042 CrossRefGoogle Scholar
  7. Chen SW (2001b) Langmuir–Blodgett fabrication of two-dimensional robust cross-linked nanoparticle assemblies. Langmuir 17(9):2878–2884. doi:10.1021/la001728w CrossRefGoogle Scholar
  8. Emin SM, Denkova PS, Papazova KI, Dushkin CD, Adachi E (2007) Study of reverse micelles of di-isobutylphenoxyethoxyethyldimethylbenzylammonium methacrylate in benzene by nuclear magnetic resonance spectroscopy. J Colloid Interface Sci 305(1):133–141. doi:10.1016/j.jcis.2006.08.013 CrossRefPubMedGoogle Scholar
  9. Feldheim DL, Grabar KC, Natan MJ, Mallouk TE (1996) Electron transfer in self-assembled inorganic polyelectrolyte/metal nanoparticle heterostructures. J Am Chem Soc 118(32):7640–7641. doi:10.1021/ja9612007 CrossRefGoogle Scholar
  10. Glotzer SC (2004) Materials science: some assembly required. Science 306(5695):419–420. doi:10.1126/science.1099988 CrossRefPubMedGoogle Scholar
  11. Guo Y, Moffitt MG (2007) Semiconductor quantum dots with environmentally responsive mixed polystyrene/poly(methyl methacrylate) brush layers. Macromolecules 40(16):5868–5878. doi:10.1021/ma070855x CrossRefADSGoogle Scholar
  12. Guo R, Song Y, Wang GL, Murray RW (2005) Does core size matter in the kinetics of ligand exchanges of monolayer-protected Au clusters? J Am Chem Soc 127(8):2752–2757. doi:10.1021/ja044638c CrossRefPubMedGoogle Scholar
  13. Hostetler MJ, Wingate JE, Zhong CJ, Harris JE, Vachet RW, Clark MR et al (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30. doi:10.1021/la970588w CrossRefGoogle Scholar
  14. Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15(11):3782–3789. doi:10.1021/la981598f CrossRefGoogle Scholar
  15. Jackson AM, Myerson JW, Stellacci F (2004) Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat Mater 3(5):330–336. doi:10.1038/nmat1116 CrossRefPubMedADSGoogle Scholar
  16. Jackson AM, Hu Y, Silva PJ, Stellacci F (2006) From homoligand- to mixed-ligand-monolayer-protected metal nanoparticles: a scanning tunneling microscopy investigation. J Am Chem Soc 128(34):11135–11149. doi:10.1021/ja061545h CrossRefPubMedGoogle Scholar
  17. Kerker M (1969) The scattering of light, and other electromagnetic radiation. Academic Press, New YorkGoogle Scholar
  18. Kohlmann O, Steinmetz WE, Mao XA, Wuelfing WP, Templeton AC, Murray RW et al (2001) NMR diffusion, relaxation, and spectroscopic studies of water soluble, monolayer-protected gold nanoclusters. J Phys Chem B 105(37):8801–8809. doi:10.1021/jp011123o CrossRefGoogle Scholar
  19. Morris KF, Froberg AL, Becker BA, Almeida VK, Tarus J, Larive CK (2005) Using NMR to develop insights into electrokinetic chromatography. Anal Chem 77(13):254A–263ACrossRefGoogle Scholar
  20. Nie ZH, Li W, Seo M, Xu SQ, Kumacheva E (2006) Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. J Am Chem Soc 128(29):9408–9412. doi:10.1021/ja060882n CrossRefPubMedGoogle Scholar
  21. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18(9):1152–1156. doi:10.1002/adma.200502431 CrossRefGoogle Scholar
  22. Perro A, Reculusa S, Ravaine S, Bourgeat-Lami EB, Duguet E (2005) Design and synthesis of Janus micro- and nanoparticles. J Mater Chem 15(35–36):3745–3760. doi:10.1039/b505099e CrossRefGoogle Scholar
  23. Pradhan S, Xu LP, Chen SW (2007) Janus nanoparticles by interfacial engineering. Adv Funct Mater 17(14):2385–2392. doi:10.1002/adfm.200601034 CrossRefGoogle Scholar
  24. Song Y, Murray RW (2002) Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles. J Am Chem Soc 124(24):7096–7102. doi:10.1021/ja0174985 CrossRefPubMedGoogle Scholar
  25. Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 120(9):1959–1964. doi:10.1021/ja972332i CrossRefGoogle Scholar
  26. Takei H, Shimizu N (1997) Gradient sensitive microscopic probes prepared by gold evaporation and chemisorption on latex spheres. Langmuir 13(7):1865–1868. doi:10.1021/la9621067 CrossRefGoogle Scholar
  27. Templeton AC, Wuelfing MP, Murray RW (2000) Monolayer protected cluster molecules. Acc Chem Res 33(1):27–36. doi:10.1021/ar9602664 CrossRefPubMedGoogle Scholar
  28. Ujihara M, Mitamura K, Torikai N, Imae T (2006) Fabrication of metal nanoparticle monolayers on amphiphilic poly(amido amine) dendrimer Langmuir films. Langmuir 22(8):3656–3661. doi:10.1021/la053202n CrossRefPubMedGoogle Scholar
  29. van Herrikhuyzen J, Portale G, Gielen JC, Christianen PCM, Sommerdijk NAJM, Meskers SCJ et al (2008) Disk micelles from amphiphilic Janus gold nanoparticles. Chem Commun 6:697–699. doi:10.1039/b715820c CrossRefGoogle Scholar
  30. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006a) Nanorice: a hybrid plasmonic nanostructure. Nano Lett 6(4):827–832. doi:10.1021/nl060209w CrossRefPubMedADSGoogle Scholar
  31. Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A et al (2006b) Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir 22(25):10451–10456. doi:10.1021/la0615950 CrossRefPubMedGoogle Scholar
  32. Whetten RL, Khoury JT, Alvarez MM, Murthy S, Vezmar I, Wang ZL et al (1996) Nanocrystal gold molecules. Adv Mater 8(5):428–433. doi:10.1002/adma.19960080513 CrossRefGoogle Scholar
  33. Woehrle GH, Warner MG, Hutchison JE (2004) Molecular-level control of feature separation in one-dimensional nanostructure assemblies formed by biomolecular nanolithography. Langmuir 20(14):5982–5988. doi:10.1021/la049491h CrossRefPubMedGoogle Scholar
  34. Xu LP, Pradhan S, Chen SW (2007) Adhesion force studies of Janus nanoparticles. Langmuir 23(16):8544–8548. doi:10.1021/la700774g CrossRefPubMedGoogle Scholar
  35. Zhang ZK, Cui ZL (1998) Catalytic functions of metal nanoparticles on polymerization of acetylene. J Mar Sci Technol 14(5):395–398Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sulolit Pradhan
    • 1
  • Lauren E. Brown
    • 1
  • Joseph P. Konopelski
    • 1
  • Shaowei Chen
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of CaliforniaSanta CruzUSA

Personalised recommendations