Understanding the role of hexadecyltrimethylammonium bromide in the preparation of selenium nanoparticles: a spectroscopic approach

Research Paper

Abstract

In this work, we report the size tunable synthesis of selenium (Se) nanoparticles with an average particle size ~16 nm by using hydrazine hydrate as the reducing agent. The solution of selenium dioxide was taken as the precursor and hexadecyltrimethylammonium bromide (CTAB) a cationic surfactant, which helps in providing sufficient stabilization to the Se nanoparticles. The synthesized Se nanoparticles were characterized by the UV–vis, X-ray diffraction (XRD), and transmission electron microscopic techniques, which demonstrated high stability of Se nanoparticles in aqueous media. The particle sizes estimated from the band gap values using effective mass approximation (EMA) agreed fairly well with those calculated from the XRD measurements. The concentration effects of Se and CTAB on the particle size have also been examined. The capping ability of the CTAB has been quantitatively evaluated from FTIR studies.

Keywords

Size tunable Hexadecyltrimethylammonium bromide Stabilization Band gap Effective mass approximation Capping ability Colloids 

References

  1. Chen YT, Zhang W, Fan YQ, Hu XQ, Zhang ZX (2006) Hydrothermal preparation of selenium nanorods. Mater Chem Phys 98:191–194. doi:10.1016/j.matchemphys.2005.05.051 CrossRefGoogle Scholar
  2. Gao X, Gao T, Zhang L (2003) Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J Mater Chem 13:6–8. doi:10.1039/b209399e CrossRefGoogle Scholar
  3. Gates B, Mayers B, Cattle B, Xia Y (2002) Synthesis and characterization of uniform nanowires of trigonal selenium. Adv Funct Mater 12:219–223. doi:10.1002/1616-3028(200203)12:3<219::AID-ADFM219>3.0.CO;2-UCrossRefGoogle Scholar
  4. Hankare PP, Bhuse VM, Garadkar KM, Delekar SD, Mulla IS (2004) Chemical deposition of cubic CdSe and HgSe thin films and their characterization. Semicond Sci Technol 19:70–75. doi:10.1088/0268-1242/19/1/012 CrossRefADSGoogle Scholar
  5. Johnson JA, Saboungi ML, Thiyagarajan P, Csencsits R, Meisel D (1999) Selenium nanoparticles: a small-angle neutron scattering study. J Phys Chem B 103:59–63. doi:10.1021/jp983229y CrossRefGoogle Scholar
  6. Kung KHS, Hayes KF (1993) Fourier transforms infrared spectroscopic study of the adsorption of cetyltrimethyl ammonium bromide and cetylpyridinium chloride on silica. Langmuir 9:263–267. doi:10.1021/la00025a050 CrossRefGoogle Scholar
  7. Liu MZ, Zhang SY, Shen YH, Zhang ML (2004) Selenium nanoparticles prepared from reverse microemulsion process. Chin Chem Lett 15:1249–1252Google Scholar
  8. Maity R, Chattopadhyay KK (2004) Synthesis and optical characterization of ZnS and ZnS:Mn nanocrystalline thin films by chemical route. Nanotechnology 15:812–816. doi:10.1088/0957-4484/15/7/017 CrossRefADSGoogle Scholar
  9. Qadri SB, Selton EF, Hus D, Dinsmore AD, Yang J, Gray HF, Ratna BR (2003) Size-induced transition temperature reduction in nanoparticles of ZnS. Phys Rev B 60:9191–9195. doi:10.1103/PhysRevB.60.9191 CrossRefADSGoogle Scholar
  10. Qin D, Zhou J, Luo C, Liu Y, Han L, Cao Y (2006) Surfactant-assisted synthesis of size-controlled trigonal Se/Te alloy nanowires. Nanotechnology 17:674–679. doi:10.1088/0957-4484/17/3/010 CrossRefADSGoogle Scholar
  11. Rajalakshmi M, Arora AK (1999) Optical properties of selenium nanoparticles dispersed in polymer. Solid State Commun 110:75–80. doi:10.1016/S0038-1098(99)00055-1 CrossRefADSGoogle Scholar
  12. Sant PA, Kamat PV (2002) Interparticle electron transfer between size-quantized CdS and TiO2 semiconductor nanoclusters. Phys Chem Chem Phys 4:198–203. doi:10.1039/b107544f CrossRefGoogle Scholar
  13. Shvalagin VV, Stroyuk AL, Kuchmii SY (2007) Photochemical synthesis of ZnO/Ag nanocomposites. J Nanopart Res 9:427–440. doi:10.1007/s11051-006-9086-5 CrossRefGoogle Scholar
  14. Sui G, Orbulescus J, Ji X, Gattas-Asfura KM, Leblance RM, Micic M (2003) Surface chemistry studies of quantum dots (QDs) modified with surfactants. J Clust Sci 14:123–133. doi:10.1023/A:1024889504216 CrossRefGoogle Scholar
  15. Tutihasi S, Chen I (1967) Optical properties and band structure of trigonal selenium. Phys Rev 158:623–630. doi:10.1103/PhysRev.158.623 CrossRefADSGoogle Scholar
  16. Wang ZL, Gao RP, Nikoobakht B, El-Sayed MA (2000) Surface reconstruction of the unstable {110} surface in gold nanorods. J Phys Chem B 104:5417–5420. doi:10.1021/jp000800w CrossRefGoogle Scholar
  17. Wang Y, Li M, Jia H, Song W, Han X, Zhang J, Yang B, Xu W, Zhao B (2006) Optical properties of Ag/CdTe nanocomposite self-organized by electrostatic interaction. Spectrochim Acta A 64:101–105. doi:10.1016/j.saa.2005.07.003 CrossRefGoogle Scholar
  18. Wang Q, Jiang C, Yu C, Chen Q (2007) General solution-based route to V–VI semiconductors nanorods from hydrolysate. J Nanopart Res 9:269–274. doi:10.1007/s11051-006-9148-8 CrossRefGoogle Scholar
  19. Wu CL, Zhao YB (2007) CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe ions in aqueous solution. Anal Bioanal Chem 388:717–722. doi:10.1007/s00216-007-1246-7 PubMedCrossRefGoogle Scholar
  20. Xu H, Huang K (1994) Chemistry biochemistry and life science application, vol 171. Hua Zhong University of Science and Technology Press, WuhamGoogle Scholar
  21. Zhang SY, Zhang J, Wang HY, Chen HY (2004) Synthesis of selenium nanoparticles in the presence of polysaccharides. Mater Lett 58:2590–2594. doi:10.1016/j.matlet.2004.03.031 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Chemistry and Centre of Advanced Studies in ChemistryPanjab UniversityChandigarhIndia

Personalised recommendations