Abstract
An effective method of preparation of bismuth nanopowders by thermal decomposition of bismuth dodecyl-mercaptide Bi(SC12H25)3 and preliminary results on their thermoelectric properties are reported. The thermolysis process leads to Bi nanoparticles due to the efficient capping agent effect of the dodecyl-disulfide by-product, which strongly bonds the surface of the Bi clusters, preventing their aggregation and significantly reducing their growth rate. The structure and morphology of the thermolysis products were investigated by differential scanning calorimetry, thermogravimetry, X-ray diffractometry, 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. It has been shown that the prepared Bi nanopowder consists of spherical shape nanoparticles, with the average diameter depending on the thermolysis temperature. The first results on the thermoelectric characterization of the prepared Bi nanopowders reveal a peculiar behavior characterized by a semimetal–semiconductor transition, and a significant increase in the Seebeck coefficient when compared to bulk Bi in the case of the lowest grain size (170 nm).
This is a preview of subscription content, access via your institution.









References
Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishing, Philadelphia
Balan L, Schneider R, Billaud D, Fort Y, Ghanbaja J (2004) A new synthesis of ultrafine nanometer-sized bismuth particles. Nanotechnology 15:940–944. doi:10.1088/0957-4484/15/8/011
Black MR, Lin YM, Cronin SB, Rabin O, Dresselhaus MS (2002) Infrared absorption in bismuth nanowires resulting from quantum confinement. Phys Rev B 65:195417-1–195417-9
Chen G, Zeng T, Borca-Tasciuc T, Song D (2000) Phonon engineering in nanostructures for solid-state energy conversion. Mater Sci Eng A 292:155–161. doi:10.1016/S0921-5093(00)00999-0
Chen G, Dresselhaus MS, Dresselhaus G, Fleurial JP, Caillat T (2003) Recent developments in thermoelectric materials. Int Mater Rev 48:45–66. doi:10.1179/095066003225010182
Cho S, DiVenere A, Wong GK, Ketterson JB, Meyer JR, Hoffman CA (1997) Thermoelectric power of MBE grown Bi thin films and Bi/CdTe superlattices on CdTe substrates. Solid State Commun 102:673–676. doi:10.1016/S0038-1098(97)00063-X
Dresselhaus MS, Dresselhaus G, Sun X, Zhang Z, Cronin SB, Koga T (1999) Low-dimensional thermoelectric materials. Phys Solid State 41:679–682. doi:10.1134/1.1130849
Fu RL, Xu S, Lu YN, Zhu JJ (2005) Synthesis and characterization of triangular bismuth nanoplates. Cryst Growth Des 5:1379–1385. doi:10.1021/cg049686n
Gallo CF, Chandrasekhar BS, Sutter PH (1963) Transport properties of bismuth single crystals. J Appl Phys 34:144–152. doi:10.1063/1.1729056
Goldsmid HJ (1964) Thermoelectric refrigeration. Plenum Press, New York
Grass RN, Stark WJ (2006) Flame spray synthesis under a non-oxidizing atmosphere: preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal. J Nanopart Res 8:729–736. doi:10.1007/s11051-006-9097-2
Gromov G, Kondratiev D, Rogov A, Yershova L (2001) Z-meter: easy-to-use application and theory. Proceedings of the 6th European workshop on thermoelectricity, Freiburg, Germany, p 1
Heremans JP (2005) Low-dimensional thermoelectricity. Acta Phys Pol A 108:609–634
Heremans J, Thrush CM (1999) Thermoelectric power of bismuth nanowires. Phys Rev B 59:12579–12583. doi:10.1103/PhysRevB.59.12579
Heremans J, Thrush CM, Lin YM, Cronin S, Zhang Z, Dresselhaus MS, Mansfield JF (2000) Synthesis and galvanomagnetic Bismuth nanowire arrays: properties. Phys Rev B 61:2921–2930. doi:10.1103/PhysRevB.61.2921
Heremans J, Thrush CM, Morelli DT, Wu MC (2002) Thermoelectric power of bismuth nanocomposites. Phys Rev Lett 88:216801. doi:10.1103/PhysRevLett.88.216801
Hicks LD, Dresselhaus MS (1993a) Effect of quantum well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731. doi:10.1103/PhysRevB.47.12727
Hicks LD, Dresselhaus MS (1993b) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631–16634. doi:10.1103/PhysRevB.47.16631
Hoffman CA, Meyer JR, Bartoli FJ, Di Venere A, Yi XJ, Hou CL, Wang HC, Ketterson JB, Wong GK (1993) Semimetal–semiconductor transition in bismuth thin films. Phys Rev B 48:11431–11434. doi:10.1103/PhysRevB.48.11431
Hostler SR, Qu YQ, Demko MT, Abramson AR, Qiu X, Burda C (2007) Thermoelectric properties of pressed bismuth nanoparticles. Superlattices Microstruct 43(3):195–207. doi:10.1016/j.spmi.2007.10.001
Huber TE, Celestine K, Graf MJ (2003) Magnetoquantum oscillations and confinement effects in arrays of 270-nm-diameter bismuth nanowires. Phys Rev B 67:245317. doi:10.1103/PhysRevB.67.245317
Isaacson RT, Williams GA (1969) Alfvén-wave propagation in solid-state plasmas. III. Quantum oscillations of the Fermi surface of bismuth. Phys Rev 185:682–688. doi:10.1103/PhysRev.185.682
Issi JP (1979) Low temperature transport properties of the group V semimetals. Aust J Phys 32:585
Larsen TH, Sigman M, Ghezelbash A, Doty RC, Korgel A (2003) Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derivated precursor. J Am Chem Soc 125:5638–5639. doi:10.1021/ja0342087
Li Y, Wang J, Deng Z, Wu Y, Sun X, Fan S, Yu D, Yang PD (2001) Bismuth nanotubes: a rational low-temperature synthetic route. J Am Chem Soc 123:9904–9905. doi:10.1021/ja016435j
Lin YM, Dresselhaus MS (2003) Thermoelectric properties of superlattice nanowires. Phys Rev B 68:075304. doi:10.1103/PhysRevB.68.075304
Lin YM, Sun X, Dresselhaus MS (2000) Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys Rev B 62:4610–4623. doi:10.1103/PhysRevB.62.4610
Lu M, Zieve RJ, van Hulst A, Jaeger HM, Rosenbaum TF, Radelaar S (1996) Low-temperature electrical-transport properties of single-crystal bismuth films under pressure. Phys Rev B 53:1609–1615. doi:10.1103/PhysRevB.53.1609
Nicolais LF, Carotenuto G (2008) Synthesis of polymer-embedded metal, semimetal, or sulfide clusters by thermolysis of mercaptide molecules dissolved in polymers. Mater Sci 1:1–11 (recent patents)
Nikolaeva A, Huber TE, Gitsu D, Konopko L (2008) Diameter-dependent thermopower of bismuth nanowires. Phys Rev B 77:035422. doi:10.1103/PhysRevB.77.035422
Nolas GS, Sharp J, Goldsmid HJ (2001) Thermoelectrics: basic principles and new materials developments. Springer, New York
Rogacheva EI, Grigorov SN, Nashchekina ON, Lyubchenko S, Dresselhaus MS (2003) Quantum-size effects in n-type bismuth thin films. Appl Phys Lett 82:2628–2630. doi:10.1063/1.1567044
Seeger K (1985) Semiconductor physics. Springer, Berlin
Sun X, Zhang Z, Dresselhaus MS (1999) Theoretical modelling of thermoelectricity in Bi nanowires. Appl Phys Lett 74:4005–4007. doi:10.1063/1.123242
Wang YM, Kim JS, Kim GH, Kim KS (2006) Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl Phys Lett 88:143106. doi:10.1063/1.2192624
Wegner K, Walker B, Tsantilis S, Pratsinis SE (2002) Design of metal nanoparticle synthesis by vapor flow condensation. Chem Eng Sci 57:1753–1762. doi:10.1016/S0009-2509(02)00064-7
Yonghui G, Jingying X (2005) Recent developments in low-dimensional thermoelectric materials. Chem J 7:072019 (Internet)
Zhang Z, Sun X, Dresselhaus MS, Ying JY, Heremans JP (1998) Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays. Appl Phys Lett 73:1589–1591. doi:10.1063/1.122213
Zhao Y, Zhang Z, Dang H (2004) A simple way to prepare bismuth nanoparticles. Mater Lett 58:790–793. doi:10.1016/j.matlet.2003.07.013
Acknowledgment
The technical assistance of Dr. Manlio Colella for SEM investigations is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Carotenuto, G., Hison, C.L., Capezzuto, F. et al. Synthesis and thermoelectric characterisation of bismuth nanoparticles. J Nanopart Res 11, 1729–1738 (2009). https://doi.org/10.1007/s11051-008-9541-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11051-008-9541-6
Keywords
- Bismuth nanoparticles
- Mercaptide thermolysis
- Semimetal–semiconductor transition
- Thermoelectric characteristics
- Nanopowder