Synthesis and thermoelectric characterisation of bismuth nanoparticles

  • Gianfranco Carotenuto
  • Cornelia L. Hison
  • Filomena Capezzuto
  • Mariano Palomba
  • Pietro Perlo
  • Pellegrino Conte
Research Paper

Abstract

An effective method of preparation of bismuth nanopowders by thermal decomposition of bismuth dodecyl-mercaptide Bi(SC12H25)3 and preliminary results on their thermoelectric properties are reported. The thermolysis process leads to Bi nanoparticles due to the efficient capping agent effect of the dodecyl-disulfide by-product, which strongly bonds the surface of the Bi clusters, preventing their aggregation and significantly reducing their growth rate. The structure and morphology of the thermolysis products were investigated by differential scanning calorimetry, thermogravimetry, X-ray diffractometry, 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy. It has been shown that the prepared Bi nanopowder consists of spherical shape nanoparticles, with the average diameter depending on the thermolysis temperature. The first results on the thermoelectric characterization of the prepared Bi nanopowders reveal a peculiar behavior characterized by a semimetal–semiconductor transition, and a significant increase in the Seebeck coefficient when compared to bulk Bi in the case of the lowest grain size (170 nm).

Keywords

Bismuth nanoparticles Mercaptide thermolysis Semimetal–semiconductor transition Thermoelectric characteristics Nanopowder 

References

  1. Ashcroft NW, Mermin ND (1976) Solid state physics. Saunders College Publishing, PhiladelphiaGoogle Scholar
  2. Balan L, Schneider R, Billaud D, Fort Y, Ghanbaja J (2004) A new synthesis of ultrafine nanometer-sized bismuth particles. Nanotechnology 15:940–944. doi:10.1088/0957-4484/15/8/011 CrossRefADSGoogle Scholar
  3. Black MR, Lin YM, Cronin SB, Rabin O, Dresselhaus MS (2002) Infrared absorption in bismuth nanowires resulting from quantum confinement. Phys Rev B 65:195417-1–195417-9Google Scholar
  4. Chen G, Zeng T, Borca-Tasciuc T, Song D (2000) Phonon engineering in nanostructures for solid-state energy conversion. Mater Sci Eng A 292:155–161. doi:10.1016/S0921-5093(00)00999-0 CrossRefGoogle Scholar
  5. Chen G, Dresselhaus MS, Dresselhaus G, Fleurial JP, Caillat T (2003) Recent developments in thermoelectric materials. Int Mater Rev 48:45–66. doi:10.1179/095066003225010182 CrossRefGoogle Scholar
  6. Cho S, DiVenere A, Wong GK, Ketterson JB, Meyer JR, Hoffman CA (1997) Thermoelectric power of MBE grown Bi thin films and Bi/CdTe superlattices on CdTe substrates. Solid State Commun 102:673–676. doi:10.1016/S0038-1098(97)00063-X CrossRefADSGoogle Scholar
  7. Dresselhaus MS, Dresselhaus G, Sun X, Zhang Z, Cronin SB, Koga T (1999) Low-dimensional thermoelectric materials. Phys Solid State 41:679–682. doi:10.1134/1.1130849 CrossRefADSGoogle Scholar
  8. Fu RL, Xu S, Lu YN, Zhu JJ (2005) Synthesis and characterization of triangular bismuth nanoplates. Cryst Growth Des 5:1379–1385. doi:10.1021/cg049686n CrossRefGoogle Scholar
  9. Gallo CF, Chandrasekhar BS, Sutter PH (1963) Transport properties of bismuth single crystals. J Appl Phys 34:144–152. doi:10.1063/1.1729056 CrossRefADSGoogle Scholar
  10. Goldsmid HJ (1964) Thermoelectric refrigeration. Plenum Press, New YorkGoogle Scholar
  11. Grass RN, Stark WJ (2006) Flame spray synthesis under a non-oxidizing atmosphere: preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal. J Nanopart Res 8:729–736. doi:10.1007/s11051-006-9097-2 CrossRefGoogle Scholar
  12. Gromov G, Kondratiev D, Rogov A, Yershova L (2001) Z-meter: easy-to-use application and theory. Proceedings of the 6th European workshop on thermoelectricity, Freiburg, Germany, p 1Google Scholar
  13. Heremans JP (2005) Low-dimensional thermoelectricity. Acta Phys Pol A 108:609–634Google Scholar
  14. Heremans J, Thrush CM (1999) Thermoelectric power of bismuth nanowires. Phys Rev B 59:12579–12583. doi:10.1103/PhysRevB.59.12579 CrossRefADSGoogle Scholar
  15. Heremans J, Thrush CM, Lin YM, Cronin S, Zhang Z, Dresselhaus MS, Mansfield JF (2000) Synthesis and galvanomagnetic Bismuth nanowire arrays: properties. Phys Rev B 61:2921–2930. doi:10.1103/PhysRevB.61.2921 CrossRefADSGoogle Scholar
  16. Heremans J, Thrush CM, Morelli DT, Wu MC (2002) Thermoelectric power of bismuth nanocomposites. Phys Rev Lett 88:216801. doi:10.1103/PhysRevLett.88.216801 PubMedCrossRefADSGoogle Scholar
  17. Hicks LD, Dresselhaus MS (1993a) Effect of quantum well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731. doi:10.1103/PhysRevB.47.12727 CrossRefADSGoogle Scholar
  18. Hicks LD, Dresselhaus MS (1993b) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47:16631–16634. doi:10.1103/PhysRevB.47.16631 CrossRefADSGoogle Scholar
  19. Hoffman CA, Meyer JR, Bartoli FJ, Di Venere A, Yi XJ, Hou CL, Wang HC, Ketterson JB, Wong GK (1993) Semimetal–semiconductor transition in bismuth thin films. Phys Rev B 48:11431–11434. doi:10.1103/PhysRevB.48.11431 CrossRefADSGoogle Scholar
  20. Hostler SR, Qu YQ, Demko MT, Abramson AR, Qiu X, Burda C (2007) Thermoelectric properties of pressed bismuth nanoparticles. Superlattices Microstruct 43(3):195–207. doi:10.1016/j.spmi.2007.10.001 CrossRefADSGoogle Scholar
  21. Huber TE, Celestine K, Graf MJ (2003) Magnetoquantum oscillations and confinement effects in arrays of 270-nm-diameter bismuth nanowires. Phys Rev B 67:245317. doi:10.1103/PhysRevB.67.245317 CrossRefADSGoogle Scholar
  22. Isaacson RT, Williams GA (1969) Alfvén-wave propagation in solid-state plasmas. III. Quantum oscillations of the Fermi surface of bismuth. Phys Rev 185:682–688. doi:10.1103/PhysRev.185.682 CrossRefADSGoogle Scholar
  23. Issi JP (1979) Low temperature transport properties of the group V semimetals. Aust J Phys 32:585ADSGoogle Scholar
  24. Larsen TH, Sigman M, Ghezelbash A, Doty RC, Korgel A (2003) Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derivated precursor. J Am Chem Soc 125:5638–5639. doi:10.1021/ja0342087 PubMedCrossRefGoogle Scholar
  25. Li Y, Wang J, Deng Z, Wu Y, Sun X, Fan S, Yu D, Yang PD (2001) Bismuth nanotubes: a rational low-temperature synthetic route. J Am Chem Soc 123:9904–9905. doi:10.1021/ja016435j PubMedCrossRefGoogle Scholar
  26. Lin YM, Dresselhaus MS (2003) Thermoelectric properties of superlattice nanowires. Phys Rev B 68:075304. doi:10.1103/PhysRevB.68.075304 CrossRefADSGoogle Scholar
  27. Lin YM, Sun X, Dresselhaus MS (2000) Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires. Phys Rev B 62:4610–4623. doi:10.1103/PhysRevB.62.4610 CrossRefADSGoogle Scholar
  28. Lu M, Zieve RJ, van Hulst A, Jaeger HM, Rosenbaum TF, Radelaar S (1996) Low-temperature electrical-transport properties of single-crystal bismuth films under pressure. Phys Rev B 53:1609–1615. doi:10.1103/PhysRevB.53.1609 CrossRefADSGoogle Scholar
  29. Nicolais LF, Carotenuto G (2008) Synthesis of polymer-embedded metal, semimetal, or sulfide clusters by thermolysis of mercaptide molecules dissolved in polymers. Mater Sci 1:1–11 (recent patents)Google Scholar
  30. Nikolaeva A, Huber TE, Gitsu D, Konopko L (2008) Diameter-dependent thermopower of bismuth nanowires. Phys Rev B 77:035422. doi:10.1103/PhysRevB.77.035422 CrossRefADSGoogle Scholar
  31. Nolas GS, Sharp J, Goldsmid HJ (2001) Thermoelectrics: basic principles and new materials developments. Springer, New YorkMATHGoogle Scholar
  32. Rogacheva EI, Grigorov SN, Nashchekina ON, Lyubchenko S, Dresselhaus MS (2003) Quantum-size effects in n-type bismuth thin films. Appl Phys Lett 82:2628–2630. doi:10.1063/1.1567044 CrossRefADSGoogle Scholar
  33. Seeger K (1985) Semiconductor physics. Springer, BerlinGoogle Scholar
  34. Sun X, Zhang Z, Dresselhaus MS (1999) Theoretical modelling of thermoelectricity in Bi nanowires. Appl Phys Lett 74:4005–4007. doi:10.1063/1.123242 CrossRefADSGoogle Scholar
  35. Wang YM, Kim JS, Kim GH, Kim KS (2006) Quantum size effects in the volume plasmon excitation of bismuth nanoparticles investigated by electron energy loss spectroscopy. Appl Phys Lett 88:143106. doi:10.1063/1.2192624 CrossRefADSGoogle Scholar
  36. Wegner K, Walker B, Tsantilis S, Pratsinis SE (2002) Design of metal nanoparticle synthesis by vapor flow condensation. Chem Eng Sci 57:1753–1762. doi:10.1016/S0009-2509(02)00064-7 CrossRefGoogle Scholar
  37. Yonghui G, Jingying X (2005) Recent developments in low-dimensional thermoelectric materials. Chem J 7:072019 (Internet)Google Scholar
  38. Zhang Z, Sun X, Dresselhaus MS, Ying JY, Heremans JP (1998) Magnetotransport investigations of ultrafine single-crystalline bismuth nanowire arrays. Appl Phys Lett 73:1589–1591. doi:10.1063/1.122213 CrossRefADSGoogle Scholar
  39. Zhao Y, Zhang Z, Dang H (2004) A simple way to prepare bismuth nanoparticles. Mater Lett 58:790–793. doi:10.1016/j.matlet.2003.07.013 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gianfranco Carotenuto
    • 1
  • Cornelia L. Hison
    • 1
  • Filomena Capezzuto
    • 1
  • Mariano Palomba
    • 1
  • Pietro Perlo
    • 2
  • Pellegrino Conte
    • 3
  1. 1.Istituto dei Materiali Compositi e BiomediciConsiglio Nazionale delle RicercheNapoliItaly
  2. 2.Centro Ricerche FiatOrbassano (TO)Italy
  3. 3.Dipartimento di Ingegneria e Tecnologie Agro-Forestali (DITAF)Università degli Studi di PalermoPalermoItaly

Personalised recommendations