Theoretical study of densification of nano-sized 3Y-TZP powder: density-grain growth coupling model

Research Paper

Abstract

Ultra fine-grained ceramic components, which can be obtained by densification of nano-sized powder, can provide excellent mechanical properties for many advanced applications. A better understanding of the densification process of such nano-ceramic materials could provide more insight on the processing of these materials. In this article, a constitutive model, with density and grain size as coupling state variables, was developed to describe the pressureless sintering of nano-sized 3Y-TZP materials. The sintering mechanism and essential sintering parameters were studied. It is found that interface reaction mechanism describes the process well and is proposed to be the dominant mechanism during the densification of nano-sized material.

Keywords

Constitutive model Sintering 3Y-TZP Interface reaction Ceramics Nanomaterials 

References

  1. Abouaf M, Chenot JL, Raisson G, Bauduin P (1988) Finite element simulation of hot isostatic pressing of metal powders. Int J Numer Methods Eng 25(1):191–212. doi:10.1002/nme.1620250116 MATHCrossRefGoogle Scholar
  2. Ashby MF (1990) Sintering and isostatic pressing diagrams (Technical report). University of Cambridge, Cambridge, UKGoogle Scholar
  3. Brook RJ (1969) Pore-grain boundary interactions and grain growth. J Am Ceram Soc 52(1):56–57. doi:10.1111/j.1151-2916.1969.tb12664.x CrossRefGoogle Scholar
  4. Coble RL (1961) Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. J Appl Phys 32(5):793–799. doi:10.1063/1.1736108 CrossRefADSGoogle Scholar
  5. Cocks ACF (1994) Overview no. 117 the structure of constitutive laws for the sintering of fine grained materials. Acta Metall Mater 42(7):2191–2210. doi:10.1016/0956-7151(94)90299-2 CrossRefGoogle Scholar
  6. Du Z-Z, Cocks ACF (1992a) Constitutive models for the sintering of ceramic components—I. Material models. Acta Metall Mater 40(8):1969–1979. doi:10.1016/0956-7151(92)90183-F CrossRefGoogle Scholar
  7. Du Z-Z, Cocks ACF (1992b) Constitutive models for the sintering of ceramic components—II. Sintering of inhomogeneous bodies. Acta Metall Mater 40(8):1981–1994. doi:10.1016/0956-7151(92)90184-G CrossRefGoogle Scholar
  8. Frost HJ, Ashby MF (1982) Deformation mechanism maps. Pergamon Press, OxfordGoogle Scholar
  9. He Z, Ma J (2001) Densification and grain growth during interface reaction controlled sintering of alumina ceramics. Ceram Int 27(3):261–264. doi:10.1016/S0272-8842(00)00073-0 CrossRefGoogle Scholar
  10. He Z, Ma J (2003a) Constitutive modeling of the densification and grain growth of fine-grained alumina ceramics. Mater Sci Eng A 361(1–2):130–135. doi:10.1016/S0921-5093(03)00510-0 Google Scholar
  11. He Z, Ma J (2003b) Constitutive modeling of the densification of PZT ceramics. J Phys Chem Solids 64(2):177–183. doi:10.1016/S0022-3697(02)00170-1 CrossRefADSGoogle Scholar
  12. Helle AS, Easterling KE, Ashby MF (1985) Hot-isostatic pressing diagrams: new developments. Acta Metall Mater 33(12):2163–2174. doi:10.1016/0001-6160(85)90177-4 CrossRefGoogle Scholar
  13. Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall Mater 13(3):227–238. doi:10.1016/0001-6160(65)90200-2 CrossRefGoogle Scholar
  14. Ma J, Cocks ACF (1997) Symposium on mechanics of granular and porous materials. Cambridge, UK, p 234Google Scholar
  15. McCoy JK, Wills RR (1987) Densification by interface-reaction controlled grain-boundary diffusion. Acta Metall Mater 35(3):577–585. doi:10.1016/0001-6160(87)90181-7 CrossRefGoogle Scholar
  16. McMeeking RM, Kuhn LT (1992) A diffusional creep law for powder compacts. Acta Metall Mater 40(5):961–969. doi:10.1016/0956-7151(92)90073-N CrossRefGoogle Scholar
  17. Olevsky EA, German RM (2000) Effect of gravity on dimensional change during sintering—I Shrinkage anisotropy. Acta Mater 48(5):1153–1166. doi:10.1016/S1359-6454(99)00368-7 CrossRefGoogle Scholar
  18. Pan J, Cocks ACF (1994) A constitutive model for stage 2 sintering of fine grained materials—I. Grain-boundaries act as perfect sources and sinks for vacancies. Acta Metall Mater 42(4):1215–1222. doi:10.1016/0956-7151(94)90138-4 CrossRefGoogle Scholar
  19. Shewmon PG (1964) The movement of small inclusions in solids by a temperature gradient. Trans Metall Soc AIME 230(5):1134–1137Google Scholar
  20. Swinkels FB, Ashby MF (1981) A second report on sintering diagrams. Acta Metall Mater 29(2):259–281. doi:10.1016/0001-6160(81)90154-1 CrossRefGoogle Scholar
  21. Xue F, Ma J (2006) Constitutive modeling for nanoceramic materials sintering. Int J Nanosci 5(4/5):611–620. doi:10.1142/S0219581X06004875 CrossRefGoogle Scholar
  22. Yang HC, Kim KT (2006) Creep densification behavior of micro and nano metal powder: grain size-dependent model. Acta Mater 54(14):3779–3790. doi:10.1016/j.actamat.2006.04.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations