Interaction between silver nanoparticle and bovine hemoglobin at different temperatures

  • S. Zolghadri
  • A. A. Saboury
  • A. Golestani
  • A. Divsalar
  • S. Rezaei-Zarchi
  • A. A. Moosavi-Movahedi
Research Paper

Abstract

The binding of silver nanoparticles to bovine hemoglobin (BHb) was studied by fluorescence, UV–Visible, and circular dichroism (CD) spectroscopic techniques at different temperatures of 20, 37, and 42 °C. The absorption spectrum of soret band, in the presence of silver nanoparticle, showed a significant spectral change, which indicated the heme groups of BHb were directly attacked and degraded by silver nanoparticle. The fluorescence data explained that the nanoparticle binding to BHb occurred at a single binding site, which demonstrated a dynamic quenching procedure. Nanoparticles could reduce the fluorescence of tryptophanyl residues of BHb to a lesser extent. Circular dichroism studies demonstrated a conformational change of BHb in the presence of silver nanoparticles. The helicity of BHb was reduced by increasing silver nanoparticle concentration at different temperatures. Thermodynamic analysis of the protein interaction by silver nanoparticles suggested that the binding process is only entropy driven.

Keywords

Silver nanoparticle BHb Circular dichroism Fluorescence Nanobiotechnology 

References

  1. Bao XY, Zhu ZW, Li NQ et al (2001) Electrochemical studies of rutin interacting with hemoglobin and determination of hemoglobin. Talanta 54:591–596. doi:10.1016/S0039-9140(00)00667-6 PubMedCrossRefGoogle Scholar
  2. Barone PW, Baik S, Heller DA et al (2005) Near-infrared optical sensors based on single-walled carbon nanotubes. Nat Mater 4:86–92. doi:10.1038/nmat1276 PubMedCrossRefADSGoogle Scholar
  3. Besteman K, Lee JO, Wiertz FGM et al (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3:727–730. doi:10.1021/nl034139u CrossRefADSGoogle Scholar
  4. Chaplin MF, Bucke C (1990) Enzyme technology. Cambridge University Press, Cambridge, pp 1–40Google Scholar
  5. Chen X, Schluesener HJ (2008) Silver nanoparticle: a nanoproduct in medical application. Toxicol Lett 176:1–12. doi:10.1016/j.toxlet.2007.10.004 PubMedCrossRefGoogle Scholar
  6. Hong R, Fischer NO, Verma A et al (2004) Control of protein structure and function through surface recognition by tailored nanoparticle scaffolds. J Am Chem Soc 126:739–743. doi:10.1021/ja037470o PubMedCrossRefGoogle Scholar
  7. Hu YJ, Liu Y, Shen XS, et al (2005) Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J Mol Struct 143–147. doi:10.1016/j.molstruc.2004.11.062
  8. Jeong SH, Hwang YH, Yi SC (2005) Antibacterial properties of padded PP/PE nonwovens incorporating nano-sized silver. J Mater Sci 40:5413–5418. doi:10.1007/s10853-005-4340-2 CrossRefADSGoogle Scholar
  9. Kandagal PB, Ashoka S, Seetharamappa J et al (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharm Biomed 41:393–399. doi:10.1016/j.jpba.2005.11.037 CrossRefGoogle Scholar
  10. Karajanagi SS, Vertegel AA, Kane RS et al (2004) Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir 20:11594–11599. doi:10.1021/la047994h PubMedCrossRefGoogle Scholar
  11. Loo C, Hirsch L, Lee MH et al (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30:1012–1014. doi:10.1364/OL.30.001012 PubMedCrossRefADSGoogle Scholar
  12. Luckarift HR, Spain JC, Naik RR et al (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213. doi:10.1038/nbt931 PubMedCrossRefGoogle Scholar
  13. Luk YY, Tingey ML, Hall DJ et al (2003) Using liquid crystals to amplify protein-receptor interactions: design of surfaces with nanometer-scale topography that present histidine-tagged protein receptors. Langmuir 19:1671–1680. doi:10.1021/la026152k CrossRefGoogle Scholar
  14. Mandal R, Kalke R, Li XF (2004) Interaction of oxaliplatin, cisplatin, and carboplatin with hemoglobin and the resulting release of a heme group. Chem Res Toxicol 17:1391–1397. doi:10.1021/tx049868j PubMedCrossRefGoogle Scholar
  15. Medintz IL, Uyeda HT, Goldman ER et al (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446. doi:10.1038/nmat1390 PubMedCrossRefADSGoogle Scholar
  16. Messori L, Gabbianii C, Casini A et al (2006) The reaction of artemisinins with hemoglobin: a unified picture. Bioorg Med Chem 14:2972–2977. doi:10.1016/j.bmc.2005.12.038 PubMedCrossRefGoogle Scholar
  17. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517. doi:10.1007/s11051-007-9275-x CrossRefGoogle Scholar
  18. Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed 40:4128–4158. doi:10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-SCrossRefGoogle Scholar
  19. Pantarotto D, Briand JP, Prato M, et al (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb) 16–17. doi:10.1039/b311254c
  20. Park SJ, Lazarides AA, Mirkin CA et al (2001) Directed assembly of periodic materials from protein and oligonucleotide-modified nanoparticle building blocks. Angew Chem Int Ed 40:2909–2912. doi:10.1002/1521-3773(20010803)40:15<2909::AID-ANIE2909>3.0.CO;2-OCrossRefGoogle Scholar
  21. Patolsky F, Lieber CM (2005) Nanowire nanosensors. Mater Today 8:20–28. doi:10.1016/S1369-7021(05)00791-1 CrossRefGoogle Scholar
  22. Pender MJ, Sowards LA, Hartgerink JD et al (2006) Peptide-mediated formation of single-wall carbon nanotube composites. Nano Lett 6:40–44. doi:10.1021/nl051899r PubMedCrossRefADSGoogle Scholar
  23. Peng X, Manna L, Yang WD et al (2000) Shape control of CdSe nanocrystals. Nature 404:59–61. doi:10.1038/35003535 PubMedCrossRefADSGoogle Scholar
  24. Roach P, Farrar D, Perry CC (2006) Surface tailoring for controlled protein adsorption: effect of topography at the nanometer scale and chemistry. J Am Chem Soc 128:3939–3945. doi:10.1021/ja056278e PubMedCrossRefGoogle Scholar
  25. Scheller FW, Bistolas N, Liu SQ et al (2005) Thirty years of haemoglobin electrochemistry. Adv Colloid Interface 116:111–120. doi:10.1016/j.cis.2005.05.006 CrossRefGoogle Scholar
  26. Shi Kam NW, Jessop TC, Wender PA et al (2004) Nanotube molecular transporters: internalization of carbon nanotubeprotein conjugates into mammalian cells. J Am Chem Soc 126:6850–6851. doi:10.1021/ja0486059 PubMedCrossRefGoogle Scholar
  27. Strano MS, Dyke CA, Usrey ML et al (2003) Electronic structure control of single-walled carbon nanotube functionalization. Science 301:1519–1522. doi:10.1126/science.1087691 PubMedCrossRefADSGoogle Scholar
  28. Sukdeb P, Yu KT, Joon MS (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720. doi:10.1128/AEM.02218-06 CrossRefGoogle Scholar
  29. Tang JH, Luan F, Chen XG et al (2006) Binding analysis of glycyrrhetinic acid to human serum albumin: Fluorescence spectroscopy, FTIR and molecular modeling. Bioorg Med Chem 14:3210–3217. doi:10.1016/j.bmc.2005.12.034 PubMedCrossRefGoogle Scholar
  30. Tao L, Jun Z, Xin G et al (2003) Wiring electrons of cytochrome c with silver nanoparticles in layered films. ChemPhysChem 4:1364–1366. doi:10.1002/cphc.200300817 CrossRefGoogle Scholar
  31. Xin G, Tao L, Jun Z et al (2004a) Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. ChemBioChem 5:1686–1691. doi:10.1002/cbic.200400080 CrossRefGoogle Scholar
  32. Xin G, Tao L, Xiaoli Z et al (2004b) An electrochemical biosensor for nitric oxide based on silver nanoparticles and hemoglobin. Anal Sci 20:1271–1275. doi:10.2116/analsci.20.1271 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • S. Zolghadri
    • 1
  • A. A. Saboury
    • 1
  • A. Golestani
    • 2
  • A. Divsalar
    • 1
  • S. Rezaei-Zarchi
    • 3
  • A. A. Moosavi-Movahedi
    • 1
  1. 1.Institute of Biochemistry and BiophysicsUniversity of TehranTehranIran
  2. 2.Department of BiochemistryTehran University of Medical ScienceTehranIran
  3. 3.Department of BiologyPayam-e-Noor UniversityYazdIran

Personalised recommendations