An optimal low-temperature tartrate precursor method for the synthesis of monophasic nanosized ZnFe2O4

Research Paper

Abstract

In this study, the synthesis of monophasic nanocrystalline zinc ferrite (ZnFe2O4) was achieved by controlling the thermal decomposition conditions of a zinc–iron tartrate precursor method. Differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Fe2+ content analysis, transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) techniques were used to investigate the effect of heat treatment conditions on the calcined powders. The thermal decomposition of the precursor led to an intermediate phase formation of ZnO, Fe3O4, and γ-Fe2O3. It was found that the Fe3O4 → γ-Fe2O3 oxidation reaction is the key step in producing monophasic nanosized ZnFe2O4. The monophasic nanoparticles of ZnFe2O4 can be obtained when the precursor is heat treated under a low temperature (300–400 °C) and long residence time (4 h) process that can prompt the Fe3O4 oxidation and prevent the formation of α-Fe2O3.

Keywords

Zinc ferrite Iron oxide Spinel Nanoparticles Fe3O4 Thermal processing 

References

  1. Braun PB (1952) A superstructure in spinels. Nature 170:1123CrossRefADSGoogle Scholar
  2. Can MM, Ozcan S, Firat T (2006) Magnetic behaviour of iron nanoparticles passivated by oxidation. Phys Status Solidi C: Conf 3:1271–1278CrossRefADSGoogle Scholar
  3. Druska P, Steinike U, Sepela’k V (1999) Surface structure of mechanically activated and of mechanosynthesized zinc ferrite. J Solid State Chem 146:13–21CrossRefADSGoogle Scholar
  4. Egger K, Feitknecht W (1962) Über die oxidation von Fe3O4 zu γ- und α-Fe2O3. Helv Chim Acta 45:2042–2057CrossRefGoogle Scholar
  5. Feitknecht W, Mannweiler U (1967) Der mechanismus der umwandlung vor γ- zu α-eisensesquioxid. Helv Chim Acta 50:570–581CrossRefGoogle Scholar
  6. Gajbhiye NS, Bhattacharya U, Darshane VS (1995) Thermal decomposition of zinc-iron citrate precursor. Thermochim Acta 264:219–230CrossRefGoogle Scholar
  7. Gillot B, Rousset A, Dupre G (1978) Influence of crystallite size on the oxidation kinetics of magnetite. J Solid State Chem 25:263–271CrossRefADSGoogle Scholar
  8. Gillot B, Benloucif RM, Rousset A (1981) A study of infrared absorption in the oxidation of zinc-substituted magnetites to defect phase γ and hematite. J Solid State Chem 39:329–336CrossRefADSGoogle Scholar
  9. Goss CJ (1988) Saturation magnetization, coercivity and lattice parameter changes in the system Fe3O4-γFe2O3, and their relationship to structure. Phys Chem Miner 16:164–171CrossRefADSGoogle Scholar
  10. Guaita FJ, Beltran H, Cordoncillo E, Beltran H, Escribano P, Gonzalez Calbet JM (1999) Influence of the precursors on the formation and the properties of ZnFe2O4. J Eur Ceram Soc 19:363–372CrossRefGoogle Scholar
  11. Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca G (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81:1851–1857CrossRefADSGoogle Scholar
  12. Hofmann M, Campbell SJ, Ehrhardt H, Feyerherm R (2004) The magnetic behaviour of nanostructured zinc ferrite. J Mater Sci 39:5057–5065CrossRefADSGoogle Scholar
  13. Jeyadevan B, Tohji K, Nakatsuka K (1994) Structure analysis of coprecipitated ZnFe2O4 by extended x-ray-absorption fine structure. J Appl Phys 76:6325–6327CrossRefADSGoogle Scholar
  14. Kamazawa K, Nakajima K, Kohn K, Tsunoda Y (2004) High magnetic field susceptibility and neutron scattering measurements for ZnFe2O4 single crystal. J Magn Magn Mater 272–276:e987–e988CrossRefGoogle Scholar
  15. Kester E, Perriat P, Gillot B, Tailhades Ph, Rousset A (1997) Correlation between oxidation states of transition metal ions and variation of coercivity in mixed-valence defect spinel ferrites. Solid State Ionics 101–103:457–463Google Scholar
  16. Kim W, Saito F (2001) Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3. Powder Technol 114:12–16CrossRefGoogle Scholar
  17. Laarj M, Kacim S, Gillot B (1996) Cationic distribution and oxidation mechanism of trivalent manganese ions in submicrometer MnxCoFe2-xO4 spinel ferrites. J Solid State Chem 125:67–74CrossRefADSGoogle Scholar
  18. Lakeman CDE, Payne DA (1994) Sol–gel processing of electrical and magnetic ceramics. Mater Chem Phys 38:305–324CrossRefGoogle Scholar
  19. Li Y, Zhao J, He X (2004) Influence of oxygen pressure on combustion synthesis of zinc ferrite powders. Mater Sci Eng B 106:196–201CrossRefGoogle Scholar
  20. Mohai I, Szépvölgyi J, Bertóti I et al (2001) Thermal plasma synthesis of zinc ferrite nanopowders. Solid State Ionics 141–142:163–168CrossRefGoogle Scholar
  21. Morrison SA, Cahill CL, Carpenter EE, Calvin S, Harris VG (2003) Preparation and characterization of MnZn-ferrite nanoparticles using reverse micelles. J Appl Phys 93:7489–7491CrossRefADSGoogle Scholar
  22. Moye V, Rane KS, Kamat Dalal VN (1990) Optimization of synthesis of nickel-zinc-ferrite from oxalates and oxalato hydrazinate precursors. J Mater Sci Mater Electron 1:212–218CrossRefGoogle Scholar
  23. Nikumbh AK, Aware AD, Sayanekar PL (1992) Electrical and magnetic properties of γ-Fe2O3 synthesized from ferrous tartarate one and half hydrate. J Magn Magn Mater 114:27–34CrossRefADSGoogle Scholar
  24. Perriat P, Gillot B (1993) A model for coupled diffusion reactions in Mn-Zn ferrites—generalization of the Ficks’s first law. Solid State Ionics 67:35–43CrossRefGoogle Scholar
  25. Rane KS, Verenkar VMS, Sawant PY (1999) Hydrazine method of synthesis of γ-Fe2O3 useful in ferrites preparation. Part IV—preparation and characterization of magnesium ferrite, MgFe2O4 from γ-Fe2O3 obtained from hydrazinated iron oxyhydroxides and iron (II) carboxylatohydrazinates. J Mater Sci Mater Electron 10:133–140CrossRefGoogle Scholar
  26. Shenoy SD, Joy PA, Anantharaman MR (2004) Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J Magn Magn Mater 269:217–226CrossRefADSGoogle Scholar
  27. Sidhu PS (1988) Transformation of trace element-substituted maghemite to hematite. Clays Clay Miner 36:31–38CrossRefGoogle Scholar
  28. Sidhu PS, Gilkes RJ, Posner AM (1977) Mechanism of the low temperature oxidation of synthetic magnetites. J Inorg Nucl Chem 39:1953–1958CrossRefGoogle Scholar
  29. Swaddle TW, Oltmann P (1980) Kinetics of the magnetite-maghemite-hematite transformation, with special reference to hydrothermal systems. Can J Chem 58:1763–1772CrossRefGoogle Scholar
  30. Tamaura Y, Kodama T, Itoh T (1990) High-vacancy-content magnetites and zinc-bearing ferrites from iron (III) tartrate in strongly alkaline solution. J Am Ceram Soc 73:2539–2542CrossRefGoogle Scholar
  31. Vogel I (1961) A textbook of quantitative inorganic analysis. Longmans, New York, p 308Google Scholar
  32. Willey RJ, Oliver SA, Oliveri G, Busca G (1993) Chemistry and structure of mixed magnesium ferric oxide aerogels. J Mater Res 8:1418–1427CrossRefADSGoogle Scholar
  33. Yang JM, Tsuo WJ, Yen FS (1999) Preparation of ultrafine nickel ferrite powders using mixed Ni and Fe tartrates. J Solid State Chem 145:50–57CrossRefADSGoogle Scholar
  34. Yang JM, Tsuo WJ, Yen FS (2001) Characterization of the thermal behavior of Li–Fe-tartrate gels (molar ratio Li/Fe<1/5). J Solid State Chem 160:100–107CrossRefADSGoogle Scholar
  35. Zhong W, Ding W, Zhang N, Hong J, Van Q, Du Y (1997) Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique. J Magn Magn Mater 168:196–202CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Industrial Engineering and ManagementDiwan College of ManagementTainanTaiwan, Republic of China
  2. 2.Department of Electronics EngineeringKao Yuan UniversityKaohsiungTaiwan, Republic of China

Personalised recommendations