Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1321–1330 | Cite as

A novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide

  • Ji-Sen Jiang
  • Zhi-Feng Gan
  • Yong Yang
  • Bing Du
  • Min Qian
  • Ping Zhang
Research Paper

Abstract

Preparation and characterization in vitro and in vivo of a novel magnetic fluid based on starch-coated magnetite nanoparticles functionalized with homing peptide is reported in this paper. Precursory magnetic fluids stabilized with starch were prepared, in a polymeric starch matrix, by controlled chemical coprecipitation of magnetite phase from aqueous solutions. The average hydrodynamic diameter of starch-coated iron oxide nanoparticles (SIONs) was 46 nm. As a homing peptide, A54 is the most effective peptide specific to the human hepatocellular carcinoma cell line BEL-7402. Final magnetic fluids were obtained through chemical coupling of homing peptide labeled with 5-carboxyl-fluorescein (FAM-A54) and SIONs. Magnetic measurements showed the saturation magnetization value of SIONs amounted to 45 emu/g and the FAM-A54-coupled SIONs showed a good magnetic response in magnetic field. The results of experiments in vitro and in vivo showed that SIONs were endowed with specific affinity to corresponding tumor cells after coupling with FAM-A54 and the FAM-A54-coupled SIONs could be accumulated in the tumor tissue with more efficiency than individual magnetic targeting or biomolecular targeting. This novel magnetic fluid with dual function has great potential applications in diagnostics and therapeutics of human tumor such as drug targeting, magnetic hyperthermia, and magnetic resonance imaging.

Keywords

Magnetic fluid Dual function Homing peptide Nanoparticles coupling Nanomedicine 

References

  1. Aina OH, Sroka TC, Chen ML, Lam KS (2002) Therapeutic cancer targeting peptides. Biopolymers 66(3):184–199. doi:10.1002/bip.10257 PubMedCrossRefGoogle Scholar
  2. Akerman ME, Chan WCW, Laakkonen P, Bhatia SN, Ruoslahti E (2002) Nanocrystal targeting in vivo. Proc Natl Acad Sci USA 99(2):12617–12621. doi:10.1073/pnas.152463399 PubMedCrossRefADSGoogle Scholar
  3. Alexiou C, Arnold W, Klein RJ, Parak FG, Hulin P, Bergemann C, Erhardt W, Wagenpfeil S, Lübbe AS (2000) Locoregional cancer treatment with magnetic drug targeting. Cancer Res 60:6641–6648PubMedGoogle Scholar
  4. Asmatulua R, Zalichb MA, Claus RO, Riffleet JS (2005) Synthesis, characterization and targeting of biodegradable magnetic nanocomposite particles by external magnetic fields. J Magn Magn Mater 292:108–109. doi:10.1016/j.jmmm.2004.10.103 CrossRefADSGoogle Scholar
  5. Berryl CC, Curtis ASG (2003) Functionalisation of magnetic nanoparticles for applications in Biomedicine. J Phys D Appl Phys 36:R198–R206CrossRefADSGoogle Scholar
  6. Bulte JWM, Zhang SC, van Gelderen P, Herynek V, Jordan EK, Duncan ID, Frank JA (1999) Neurotransplantation of magnetically labeled oligodendrocyte progenitors: MR tracking migration and myelination. Proc Natl Acad Sci USA 96(26):15256–15261. doi:10.1073/pnas.96.26.15256 PubMedCrossRefADSGoogle Scholar
  7. Chen DH, Liao MH (2002) Preparation and characterization of YADH-bound magnetic nanoparticles. J Mol Catal B Enzym 16:283–291. doi:10.1016/S1381-1177(01)00074-1 CrossRefGoogle Scholar
  8. Gan ZF, Jiang JS (2005) Preparation of magnetic monodisperse nanoparticles and biopolymer assemble on the magnetic carriers. Prog Chem 17(6):978–986Google Scholar
  9. Gan ZF, Jiang JS, Yang Y, Du B, Qian M, Zhang P (2008) Immobilization of homing peptide on magnetite nanoparticles and its specificity in vitro. J Biomed Mater Res A 84A(1):10–18. doi:10.1002/jbm.a.31181 CrossRefGoogle Scholar
  10. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. doi:10.1016/j.biomaterials.2004.10.012 PubMedCrossRefGoogle Scholar
  11. Hong X, Guo W, Yuan H, Li J, Liu Y, Ma L, Bai Y, Li T (2004) Periodate oxidation of nanoscaled magnetic dextran composites. J Magn Magn Mater 269:95–100. doi:10.1016/S0304-8853(03)00566-3 CrossRefADSGoogle Scholar
  12. Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349. doi:10.1016/S0142-9612(03)00026-7 PubMedCrossRefGoogle Scholar
  13. Kim DK, Mikhaylova M, Wang FH, Kehr J, Bjelke B, Zhang Y, Tsakalakos T, Muhammed M (2003) Starch-coated superparamagnetic nanoparticles as MR contrast agents. Chem Mater 15:4343–4351. doi:10.1021/cm031104m CrossRefGoogle Scholar
  14. Lübbe AS, Bergemann C, Huhnt W, Fricke T, Riess H, Brock JW, Huhn D (1996) Preclinical experiences with magnetic drug targeting: tolerance and efficacy. Cancer Res 56:4694–4701PubMedGoogle Scholar
  15. Matveev YI, van Soest JJG, Nieman C, Wasserman LA, Protserov VA, Ezernitskaja M, Yuryev VP (2001) The relationship between thermodynamic and structural properties of low and high amylose maize starches. Carbohydr Polym 44:151–160. doi:10.1016/S0144-8617(00)00211-3 CrossRefGoogle Scholar
  16. Mohapatra S, Mallick SK, Maiti TK, Ghosh SK, Pramanik P (2007) Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology 18:1–9Google Scholar
  17. Pasqualini R, Ruoslahti E (1996) Organ targeting in vivo using phage display peptide libraries. Nature 380(6572):364–366. doi:10.1038/380364a0 PubMedCrossRefADSGoogle Scholar
  18. Plaza RC, Vicente JD, Gómez-Lopera S, Delgado AV (2001) Stability of dispersions of colloidal nickel ferrite spheres. J Colloid Interface Sci 242:306–313. doi:10.1006/jcis.2001.7882 CrossRefGoogle Scholar
  19. Qian M, Zhou ZL, Zhang P, Du B, Yu J, Yu M (2004) A hepatocarcinoma-binding peptide from a phage-display random peptide library identified by in vivo panning and its application. Chinese Patent No. 1563077Google Scholar
  20. Selim KMK, Ha YS, Kim SJ, Chang Y, Kim TJ, Lee GH, Kang IK (2007) Surface modification of magnetite nanoparticles using lactobionic acid and their interaction with hepatocytes. Biomaterials 28:710–716. doi:10.1016/j.biomaterials.2006.09.014 CrossRefGoogle Scholar
  21. Xu XQ, Shen H, Xu JR, Xu J, Li XJ, Xiong XM (2005) Core-shell structure and magnetic properties of magnetite magnetic fluids stabilized with dextran. Appl Surf Sci 252:494–500. doi:10.1016/j.apsusc.2005.01.027 CrossRefADSGoogle Scholar
  22. Yang X, Jiang J, Jing J, Hsia YF, Hu Z, Chen X, He Y (1992) Influence of solvent on the superparamagnetic relaxation of nanocrystalline Fe3O4 in ferrofluids. Hyperfine Interact 70:1129–1132. doi:10.1007/BF02397528 CrossRefADSGoogle Scholar
  23. Zaitsev VS, Filimonov DS, Presnyakov IA, Gambino RJ, Chu B (1999) Physical and chemical properties of magnetite and magnetite-polymer nanoparticles and their colloidal dispersions. J Colloid Interface Sci 212:49–57. doi:10.1006/jcis.1998.5993 PubMedCrossRefGoogle Scholar
  24. Zhang Y, Kohler N, Zhang M (2002) Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23(7):1553–1561. doi:10.1016/S0142-9612(01)00267-8 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Ji-Sen Jiang
    • 1
  • Zhi-Feng Gan
    • 1
  • Yong Yang
    • 1
  • Bing Du
    • 2
  • Min Qian
    • 2
  • Ping Zhang
    • 2
  1. 1.Department of Physics, Center of Functional Nanomaterials and DevicesEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.School of Life ScienceEast China Normal UniversityShanghaiPeople’s Republic of China

Personalised recommendations