Free-carrier absorption and optical limiting in the suspensions of CuS and Cu2O hollow spheres

Brief Communication


In order to reveal the optical limiting mechanisms of semiconductor hollow spheres, the nonlinear optical properties of CuS and Cu2O hollow spheres were investigated via the fluence-dependent transmittance and the nonlinear scattering measurements. The CuS and Cu2O hollow spheres have similar morphologies and different types of optical band-gap. The experimental results show that the optical limiting performance of CuS is better than that of Cu2O, although the nonlinear scattering of Cu2O is stronger than that of CuS. Free-carrier absorption based on the delocalized carriers (holes) in CuS is believed to play an important role in the optical limiting effects. The merits of the structure of semiconductor hollow spheres used for optical limiting were discussed.


Hollow spheres Nonlinear optical properties Nonlinear scattering Free-carrier absorption Nanoscale shells 


  1. Artemyev MV, Gurin VS, Yumashev KV, Prokoshin PV, Maljarevich AM (1996) Picosecond absorption spectroscopy of surface modified copper sulfide nanocrystals in polymeric film. J Appl Phys 80:7028–7035. doi:10.1063/1.363814 CrossRefADSGoogle Scholar
  2. Bindra KS (2005) Influence of free carrier refraction due to linear absorption on Z-scan study of porous Si. Opt Commun 246:421–427. doi:10.1016/j.optcom.2004.11.003 CrossRefADSGoogle Scholar
  3. Chang Q, Chang C, Zhang XR, Ye HG, Shi G, Zhang W et al (2007) Enhanced optical limiting properties in suspensions of CdO nanowires. Opt Commun 274:201–205. doi:10.1016/j.optcom.2007.01.064 CrossRefADSGoogle Scholar
  4. Ching WY, Xu YN, Wong KW (1989) Ground-state and optical properties of Cu2O and CuO crystals. Phys Rev B 40:7684–7695. doi:10.1103/PhysRevB.40.7684 CrossRefADSGoogle Scholar
  5. Creekmore S, Seo JT, Yang Q, Wang Q, Anderson J, Pompey C et al (2003) Nonlinear optical properties of cadmium telluride semiconductor nanocrystals for optical power-limiting application. J Korean Phys Soc 42:S143–S148Google Scholar
  6. Flaisher H, Tenne R, Hodes G (1984) Improved performance of cadmium chalcogenide photoelectrochemical cells: surface modification using copper sulphide. J Phys D 14:1055–1066. doi:10.1088/0022-3727/17/6/002 CrossRefADSGoogle Scholar
  7. Folmer JCW, Jellinek F (1980) The valence of copper in sulphides and selenides: an x-ray photoelectron spectroscopy study. J Less Common Met 76:153–162. doi:10.1016/0022-5088(80)90019-3 CrossRefGoogle Scholar
  8. Ganeev RA, Ryasnyansky AI, Tugushev RI, Usmanov T (2003) Investigation of nonlinear refraction and nonlinear absorption of semiconductor nanoparticle solutions prepared by laser abalation. J Opt A 5:409–417ADSGoogle Scholar
  9. Gao JN, Li QS, Zhao HB, Li LS, Liu CL, Gong QH, Qi LM (2008) One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties. Chem Mater 20:6263–6269CrossRefGoogle Scholar
  10. Gotsis HJ, Barnes AC, Strange P (1992) Experimental and theoretical investigation of the crystal structure of CuS. J Phys Condens Matter 4:10461–10468. doi:10.1088/0953-8984/4/50/034 CrossRefADSGoogle Scholar
  11. Grioni M, Acker JFV, Czyžyk MT, Fuggle JC (1992) Unoccupied electronic structure and core-hole effects in the x-ray-absorption spectra of Cu2O. Phys Rev B 45:3309–3318. doi:10.1103/PhysRevB.45.3309 CrossRefADSGoogle Scholar
  12. Grozdanov I, Najdoski M (1995) Optical and electrical properties of copper sulfide films of variable composition. J Solid State Chem 114:469–475. doi:10.1006/jssc.1995.1070 CrossRefADSGoogle Scholar
  13. Hollins RC (1999) Materials for optical limiters. Curr Opin Solid State Mater Sci 4:189–196. doi:10.1016/S1359-0286(99)00009-1 CrossRefGoogle Scholar
  14. Jia WL, Douglas EP, Guo FG, Sun WF (2004) Optical limiting of semiconductor nanoparticles for nanosecond laser pulses. Appl Phys Lett 85:6326–6328. doi:10.1063/1.1836871 CrossRefADSGoogle Scholar
  15. King SM, Chaure S, Doyle J, Colli A, Ferrari AC, Blau WJ (2007) Scattering induced optical limiting in Si/SiO2 nanostructure dispersions. Opt Commun 276:305–309. doi:10.1016/j.optcom.2007.04.028 CrossRefADSGoogle Scholar
  16. Lavrentyev AA, Gabrelian BV, Nikiforov YI, Rehr JJ, Ankudinov AL (2004) The electron energy structure of some sulfides of iron and copper. J Electron Spectrosc Relat Phenom 137–140:495–498. doi:10.1016/j.elspec.2004.02.090 CrossRefGoogle Scholar
  17. Li C, Liu CL, Li FH, Gong QH (2003) Optical limiting performance of two soluble multi-walled carbon nanotubes. Chem Phys Lett 380:201–205. doi:10.1016/j.cplett.2003.08.078 CrossRefADSGoogle Scholar
  18. Li QS, Liu CL, Liu ZG, Gong QH (2005) Broadband optical limiting and two-photon absorption properties of colloidal GaAs nanocrystals. Opt Express 13:1833–1838. doi:10.1364/OPEX.13.001833 CrossRefADSPubMedGoogle Scholar
  19. Li QS, Liu CL, Zang LY, Gong QH, Yu XL, Cao CB (2008a) Broadband optical limiting in the suspensions of lead sulfide nanoparticles. Laser Phys 18:434–437. doi:10.1134/s11490-008-4013-3 CrossRefADSGoogle Scholar
  20. Li QS, Liu CL, Zang LY, Gong QH, Yu XL, Cao CB (2008b) Nonlinear scattering, absorption and refraction processes in the colloidal suspensions of Bi2S3 and CuS nanoparticles and their combined effects for broadband optical limiting. J Opt Soc Am B (accepted for publication)Google Scholar
  21. Medenbach O, Shannon RD (1997) Refractive indices and optical dispersion of 103 synthetic and mineral oxides and silicates measured by a small-prism technique. J Opt Soc Am B 14:3299–3318. doi:10.1364/JOSAB.14.003299 CrossRefADSGoogle Scholar
  22. Merwin HE (1915) Covellite: a singular case of chromatic reflection. J Wash Acad Sci 5:341–344Google Scholar
  23. Nanda J, Sapra S, Sarma DD, Chandrasekharan N, Hodes G (2000) Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies. Chem Mater 12:1018–1024. doi:10.1021/cm990583f CrossRefGoogle Scholar
  24. Őnsten A, Månsson M, Claesson T, Muro T, Matsushita T, Nakamura T et al (2007) Probing the valence band structure of Cu2O using high-energy angle-resolved photoelectron spectroscopy. Phys Rev B 76:115127. doi:10.1103/PhysRevB.76.115127 CrossRefADSGoogle Scholar
  25. Rychnovsky SJ (1994) Optical nonlinearities and optical limiting in gallium phosphide at 532 nm. PhD Dissertation, University of IowaGoogle Scholar
  26. Salazar-Alvarez G, Björkman E, Lopes C, Eriksson A, Svensson S, Muhammed M (2007) Synthesis and nonlinear light scattering of microemulsions and nanoparticle suspensions. J Nanopart Res 9:647–652CrossRefGoogle Scholar
  27. TiWari SK, Joshi MP, Laghate M, Mehendale SC (2002) Role of host liquid in optical limiting in ink suspensions. Opt Laser Technol 34:487–491. doi:10.1016/S0030-3992(02)00047-6 CrossRefADSGoogle Scholar
  28. Tutt LW, Boggess TF (1993) A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog Quantum Electron 17:299–338. doi:10.1016/0079-6727(93)90004-S CrossRefADSGoogle Scholar
  29. Venkatram N, Rao DN, Akundi MA (2005) Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles. Opt Express 13:867–872. doi:10.1364/OPEX.13.000867 CrossRefADSPubMedGoogle Scholar
  30. You L (2007) Copper sulfide solid-state electrolytic memory devices. PhD Dissertation, Case Western Reserve UniversityGoogle Scholar
  31. Yu XL, Cao CB, Zhu HS, Li QS, Liu CL, Gong QH (2007) Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties. Adv Funct Mater 17:1397–1401. doi:10.1002/adfm.200600245 CrossRefGoogle Scholar
  32. Van Stryland EW, Woodall MA, Vanherzeele H, Soileau MJ (1985) Energy band-gap dependence of two-photon absorption. Opt Lett 10:490–492CrossRefADSPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Physics & State Key Laboratory for Mesoscopic PhysicsPeking UniversityBeijingChina
  2. 2.Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of ChemistryPeking UniversityBeijingChina

Personalised recommendations