Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1441–1452 | Cite as

Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites

  • Zhanhu Guo
  • Koo Shin
  • Amar B. Karki
  • David P. Young
  • Richard B. Kaner
  • H. Thomas Hahn
Research Paper


The effect of iron oxide nanoparticle addition on the physicochemical properties of the polypyrrole (PPy) was investigated. In the presence of iron oxide nanoparticles, PPy was observed in the form of discrete nanoparticles, not the usual network structure. PPy showed crystalline structure in the nanocomposites and pure PPy formed without iron oxide nanoparticles. PPy exhibited amorphous structure and nanoparticles were completely etched away in the nanocomposites formed with mechanical stirring over a 7-h reaction. The thermal stability of the PPy in the nanocomposites was enhanced under the thermo-gravimetric analysis (TGA). The electrical conductivity of the nanocomposites increased greatly upon the initial addition (20 wt%) of iron oxide nanoparticles. However, a higher nanoparticle loading (50 wt%) decreased the conductivity as a result of the dominance of the insulating iron oxide nanoparticles. Standard four-probe measurements indicated a three-dimensional variable-range-hopping conductivity mechanism. The magnetic properties of the fabricated nanocomposites were dependent on the particle loading. Ultrasonic stirring was observed to have a favorable effect on the protection of iron oxide nanoparticles from dissolution in acid. A tight polymer structure surrounds the magnetic nanoparticles, as compared to a complete loss of the magnetic iron oxide nanoparticles during conventional mechanical stirring for the micron-sized iron oxide particles filled PPy composite fabrication.


Polymer nanocomposites Conductivity Stirring methods Magnetic property Thermal stability Corrosion-resistance Nanomanufacturing 


  1. Abthagir PS, Saraswathi R (2005) Thermal stability of polypyrrole prepared from a ternary eutectic melt. Mater Chem Phys 92:21–26CrossRefGoogle Scholar
  2. Asavapiriyanont S, Chandler GK, Gunawardena GA, Pletcher D (1984) The electrodeposition of polypyrrole films from aqueous solutions. J Electroanal Chem 177:229–244CrossRefGoogle Scholar
  3. An KH, Jeong SY, Hwang HR, Lee YH (2004) Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites. Adv Mater 16:1005–1009CrossRefGoogle Scholar
  4. Beek W, Wienk MM, Jassen RAJ (2004) Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Adv Mater 16:1009–1013CrossRefGoogle Scholar
  5. Bi S, Wei X, Li N, Lei Z (2008) In-situ formation of Fe3O4 nanoparticles within the thermosensitive hairy hybrid particles. Mater Lett 62:2963–2966CrossRefGoogle Scholar
  6. Brosseau C, Talbot P (2005) Effective magnetic permeability of Ni and Co Micro- and nanoparticles embedded in a ZnO matrix. J Appl Phys 97:104325CrossRefADSGoogle Scholar
  7. Castro C, Ramos J, Millan A, Gonzalez-Calbet J, Palacio F (2000) Production of magnetic nanoparticles in imine polymer matrixes. Chem Mater 12:3681–3688CrossRefGoogle Scholar
  8. Chen W, Li X, Xue G, Wang Z, Zou W (2003) Magnetic and conducting particles: preparation of polypyrrole layer on Fe3O4 nanospheres. Appl Surf Sci 218:215–221CrossRefADSGoogle Scholar
  9. Chen Y, Sun L, Chiparus O, Negulescu I, Yachmenev V, Warnock M (2005) Kenaf/Ramie Composite for automotive headliner. J Polym Environ 13:107–114CrossRefGoogle Scholar
  10. Corbierre MK, Cameron NS, Sutton M, Mochrie SGJ, Lurio LB, Ruehm A, Lennox RB (2001) Polymer-stabilized gold nanoparticles and their incorporation into polymer matrices. J Am Chem Soc 123:10411–10412PubMedCrossRefGoogle Scholar
  11. Dey A, De A, De SK (2005) Electrical transport and dielectric relaxation in Fe3O4-polypyrrole hybrid nanocomposites. J Phys Condens Matter 17:5895–5910CrossRefADSGoogle Scholar
  12. Dutta K, De SK (2006) Transport and optical properties of SiO2-polypyrrole nanocomposites. Solid State Commun 140:167–171CrossRefADSGoogle Scholar
  13. Ferreira CA, Aeiyach S, Delamar M, Lacaze PC (1990) Electropolymerization of pyrrole on iron electrodes Influence of solvent and electrolyte on the nature of the deposits. J Electroanal Chem 284:351–369CrossRefGoogle Scholar
  14. Gall K, Dunn ML, Liu Y, Stefanic G, Balzar D (2004) Internal stress storage in shape memory polymer nanocomposites. Appl Phys Lett 85:290–292CrossRefADSGoogle Scholar
  15. Gangopadhyay R, De A, Das S (2000) Transport properties of polypyrrole-ferric oxide conducting nanocomposites. J Appl Phys 87:2363–2367CrossRefADSGoogle Scholar
  16. Guo Z, Henry L, Palshin V, Podlaha EJ (2006) Synthesis of poly(methyl methacrylate) stabilized colloidal zero-valence metallic nanoparticles. J Mater Chem 16:1772–1777CrossRefGoogle Scholar
  17. Guo Z, Park S, Hahn HT, Wei S, Wei S, Moldovan M, Karki AB, Karki AB, Young DP (2007a) Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. J Appl Phys 101:09M511CrossRefGoogle Scholar
  18. Guo Z, Park S, Hahn HT, Wei S, Moldovan M, Karki AB, Young DP (2007b) Giant magnetoresistance behavior of an iron/carbonized polyurethane nanocomposite. Appl Phys Lett 90:053111CrossRefADSGoogle Scholar
  19. Guo Z, Park S, Wei S, Pereira T, Moldovan M, Karki AB, Young DP, Hahn HT (2007c) Flexible high-loading particle-reinforced polyurethane magnetic nanocomposite fabrication through particle-surface-initiated polymerization. Nanotechnology 18:335704CrossRefGoogle Scholar
  20. Han G, Yuan J, Shi G, Wei F (2005) Electrodeposition of polypyrrole/multiwalled carbon nanotube composite films. Thin Solid Films 474:64–69CrossRefADSGoogle Scholar
  21. Huang K, Wan M, Long Y, Chen Z, Wei Y (2005) Multi-functional polypyrrole nanofibers via a functional dopant-introduced process. Syn Met 155:495–500CrossRefGoogle Scholar
  22. Ingram MD, Staesche H, Ryder KS (2004) ‘Ladder-doped’ polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors? J Power Sources 129:107–112CrossRefGoogle Scholar
  23. Kwon JD, Kim PH, Keum JH, Kim JS (2004) Polypyrrole/titania hybrids: synthetic variation and test for the photovoltaic materials. Sol Energy Mater Sol Cells 83:311–321CrossRefGoogle Scholar
  24. Lakard B, Segut O, Lakard S, Herlem G, Gharbi T (2007) Potentiometric miniaturized pH sensors based on polypyrrole films. Sens Actuators B 122:101–108CrossRefGoogle Scholar
  25. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Metallic transport in polyaniline. Nature 44:65–68CrossRefADSGoogle Scholar
  26. Lee S, Shin HJ, Yoon SM, Yi DK, Choi JY, Paik U (2008) Refractive index engineering of transparent ZrO2–polydimethyldiloxane nanocomposites. J Mater Chem 18:1751–1755CrossRefGoogle Scholar
  27. Lei Z, Bi S (2007) Preparation of polymer nanocomposites of core-shell structure via surface-initiated atom transfer radical polymerizations. Mater Lett 61:3531–3534CrossRefGoogle Scholar
  28. Li X, Wan M, Wei Y, Shen J, Chen Z (2006) Electromagnetic functionalized and core-shell micro/nanostructured polypyrrole composites. J phys Chem B 110:14623–14626PubMedCrossRefGoogle Scholar
  29. Li Y, Wei GX, Sue HJ (2002) Morphology and toughening mechanisms in clay-modified styrene-tutadiene-styrene rubber-toughened polypropylene. J Mater Sci 37:2447–2459CrossRefGoogle Scholar
  30. Mack JJ, Viculis LM, Ali A, Luoh R, Yang G, Hahn HT, Ko FK, Kaner RB (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17:77–80CrossRefGoogle Scholar
  31. Mammeri F, Bourhis EL, Rozes L, Sanchez C (2005) Mechanical properties of hybrid organic-inorganic materials. J Mater Chem 15:3787–3811CrossRefGoogle Scholar
  32. Mei Y, Zhou ZJ, Luo HL (1987) Electrical resistivity of rf-sputtered iron oxide thin films. J Appl Phys 61:4388–4389CrossRefADSGoogle Scholar
  33. Mohr R, Kratz K, Weigel T, Lucka-Gabor M, Moneke M, Lendlein A (2006) Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc Natl Acad Sci 103:3540–3545PubMedCrossRefADSGoogle Scholar
  34. Noh KA, Kim DW, Jin CS, Shin KH, Kim JH, Ko JM (2003) Synthesis and pseudo-capacitance of chemically-prepared polypyrrole powder. J Power Sources 124:593–595CrossRefGoogle Scholar
  35. Omastova M, Boukerma K, Chehimi MM, Trchova M (2005) Novel silicon carbide/polypyrrole composite; preparation and physicochemical properties. Mat Res Bull 40:749–765CrossRefGoogle Scholar
  36. Ortiz C, Lim G, Chen MM, Castillo G (1988) Physical properties of spinel iron oxide thin films. J Mater Res 3:344–350CrossRefADSGoogle Scholar
  37. Podlaha EJ, Li Y, Zhang J, Huang Q, Panda A, Lozano-Morales A, Davis D, Guo Z (2006) Nanomaterials Handbook Y Gogotsi (ed) Boca Raton, FL: CRC Press, 475Google Scholar
  38. Ram S (1995) Infrared study of the dynamics of boroxol rings in the crystallization of BaFe12O19 microcrystals in borate glasses. Phys Rev B 51:6280–6286CrossRefADSGoogle Scholar
  39. Sepulveda-guzman S, Lara L, Perez-Camacho O, Rodriguez-Fernandez O, Olivas A, Escudero R (2007) Synthesis and characterization of an iron oxide poly(styrene-co-carboxybutylmaleimide) ferrimagnetic composite. Polymer 48:720–727CrossRefGoogle Scholar
  40. Song HK, Palmore GTR (2006) Redox-active polypyrrole: toward polymer-based batteries. Adv Mater 2006(18):1764–1768CrossRefGoogle Scholar
  41. Su SJ, Kuramoto N (2000) Processable polyaniline-titanium dioxide nanocomposites: effect of titanium dioxide on the conductivity. Syn Met 114:147–153CrossRefGoogle Scholar
  42. Suri K, Annapoorni S, Tandon RP (2001) Phase change induced by polypyrrole in iron-oxide polypyrrole nanocomposite. Bull Mater Sci 24:563–567CrossRefGoogle Scholar
  43. Suri K, Annapoorni A, Tandon RP, Rath C, Aggrawal VK (2003) Thermal transition behavior of iron oxide-polypyrrole nanocomposites. Curr Appl Phy 3:209–213CrossRefGoogle Scholar
  44. Tandon RP, Tripathy MR, Arora AK, Hotchandani S (2006) Gas and humidity response of iron oxide-polypyrrole nanocomposites. Sens Actuators B 114:768–773CrossRefGoogle Scholar
  45. Toal SJ, Trogler WC (2006) Polymer sensors for nitroaromatic explosives detection. J Mater Chem 2006(16):2871–2883CrossRefGoogle Scholar
  46. Vivekchand S, Kam KC, Gundiah G, Govindaraj A, Cheetham AK, Rao CNR (2005) Electric properties of inorganic nonowire-polymer composites. J Mater Chem 15:4922–4927CrossRefGoogle Scholar
  47. Wang L, Rocci-Lane M, Brazis P, Kannewurf CR, Kim YI, Lee W, Choy JH, Kanatzidis MG (2000) R-RuCl3/polymer nanocomposites: the first group of intercalative nanocomposites with transition metal halides. J Am Chem Soc 122:6629–6640CrossRefGoogle Scholar
  48. Wetzel B, Haupert F, Zhang MQ (2003) Epoxy nanocomposites with high mechanical and tribological performance. Comp Sci Technol 63:2055–2067CrossRefGoogle Scholar
  49. Yeh JM, Chin CP, Chang S (2003) Enhanced corrosion protection coatings prepared from soluble electronically conductive polypyrrole-clay nanocomposite materials. J Appl Polym Sci 88:3264–3272CrossRefGoogle Scholar
  50. Yen SJ, Chen EC, Chiang RK, Wu TM (2008) Preparation and characterization of polypyrrole/magnetite nanocomposites synthesized by in situ chemical oxidative polymerization. J Polym Sci B; Polym Phys 46:1291–1300CrossRefGoogle Scholar
  51. Yuvaraj H, Woo MH, Park EJ, Jeong YT, Lim KT (2008) Polypyrrole/γ-Fe2O3 magnetic nanocomposites synthesized in supercritical fluid. Eur Polym J 44:637–644CrossRefGoogle Scholar
  52. Zaid B, Aeiyach S, Lacaze PC (1994) Electropolymerization of pyrrole in propylene carbonate on zinc electrodes modified by heteropolyanions. Syn Met 65:27–34CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Zhanhu Guo
    • 1
    • 2
  • Koo Shin
    • 3
  • Amar B. Karki
    • 4
  • David P. Young
    • 4
  • Richard B. Kaner
    • 5
  • H. Thomas Hahn
    • 1
  1. 1.Multifunctional Composites Lab (MCL), Mechanical & Aerospace Engineering and Materials Science & Engineering DepartmentUniversity of CaliforniaLos AngelesUSA
  2. 2.Chemical Engineering DepartmentLamar UniversityBeaumontUSA
  3. 3.Department of Applied ChemistrySejong UniversitySeoulSouth Korea
  4. 4.Department of Physics and AstronomyLouisiana State UniversityBaton RougeUSA
  5. 5.Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations