Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1421–1427 | Cite as

Generation and characterization of NiO nanoparticles by continuous wave fiber laser ablation in liquid

  • Sohaib Z. Khan
  • Yudie Yuan
  • Amin Abdolvand
  • Marc Schmidt
  • Philip Crouse
  • Lin Li
  • Zhu Liu
  • Martin Sharp
  • K. G. Watkins
Research Paper

Abstract

Pulsed laser ablation in liquid (PLAL) has been widely applied for the generation of nanoparticles (NPs). We report on the generation of NiO NPs using a high-power, high-brightness continuous wave (CW) fiber laser source at a wavelength of 1,070 nm. Characterization of such NPs in terms of size distribution, shape, chemical composition, and phase structure was carried out by transmission electron microscopy (TEM), high-resolution TEM equipped with energy-dispersive X-ray (EDX), and X-ray diffraction (XRD). The results revealed the formation of NiO NPs in water with an average size of 12.6 nm. The addition of anionic surfactant sodium dodecyl sulfate (SDS) reduced the size of NiO NPs down to 10.4 nm. The shape of the NPs was also affected by the SDS, showing the change of shapes from spherical domination in water to tetragonal with increased SDS concentrations. Furthermore, the NiO NPs generated in water and SDS solutions were dual phase containing both cubic and rhombohedral structures. It was also found that the NiO NPs were single crystalline in nature irrespective of the size and shape.

Keywords

Nanomaterials Cubic and rhombohedral nickel oxide CW laser Nanoparticle synthesis Colloids 

References

  1. Abdolvand A, Khan SZ et al (2007) Efficient generation of titanium oxide nanomaterials using a continuous wave high-power fiber laser. Conference on lasers and electro-optics (CLEO Europe), Munich, GermanyGoogle Scholar
  2. Abdolvand A, Khan SZ et al (2008) Generation of titanium-oxide nanoparticles in liquid using a high-power, high-brightness continuous-wave fiber laser. Appl Phys A 91(3):365–368. doi:10.1007/s00339-008-4448-8 CrossRefADSGoogle Scholar
  3. Bernand-Mantel A, Seneor P et al (2006) Evidence for spin injection in a single metallic nanoparticle: a step towards nanospintronics. J Appl Phys Lett 89(6):062502. doi:10.1063/1.2236293 CrossRefADSGoogle Scholar
  4. Boschloo G, Hagfeldt A (2001) Spectroelectrochemistry of nanostructured NiO. J Phys Chem B 105(15):3039–3044. doi:10.1021/jp003499s CrossRefGoogle Scholar
  5. Ditlbacher H, Krenn JR et al (2000) Spectrally coded optical data storage by metal nanoparticles. Opt Lett 25(8):563–565. doi:10.1364/OL.25.000563 PubMedCrossRefADSGoogle Scholar
  6. Fojtik A, Henglein A (1993) Laser ablation of films and suspended particles in a solvent. Formation of cluster and colloid solutions. Ber Bunsen-Ges Phys Chem 97(2):252Google Scholar
  7. Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33(4):223–315. doi:10.1016/0079-6425(89)90001-7 CrossRefGoogle Scholar
  8. Golightly JS, Castleman AW Jr (2006) Analysis of titanium nanoparticles created by laser irradiation under liquid environment. J Phys Chem B 110(40):19979–19984. doi:10.1021/jp062123x PubMedCrossRefGoogle Scholar
  9. Jin Z, Lan CQ (2008) Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution. Mat Lett 62(10–11):1521–1524Google Scholar
  10. Kim S, Yoo BK et al (2005) Catalytic effect of laser ablated Ni nanoparticles in the oxidative addition reaction for a coupling reagent of benzylchloride and bromoacetonitrile. J Mol Catal Chem 226(2):231–234. doi:10.1016/j.molcata.2004.10.038 CrossRefGoogle Scholar
  11. Kumar S, Nann T (2006) Shape control of II–VI semiconductor nanomaterials. Small 2(3):316–329. doi:10.1002/smll.200500357 PubMedCrossRefGoogle Scholar
  12. Liu B, Hu Z et al (2007) Nanoparticle generation in ultrafast pulsed laser ablation of nickel. Appl Phys Lett 90(4):044103. doi:10.1063/1.2434168 CrossRefADSGoogle Scholar
  13. Mafune F, Kohno J-Y et al (2000a) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104(39):9111–9117. doi:10.1021/jp001336y CrossRefGoogle Scholar
  14. Mafune F, Kohno J-Y et al (2000b) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104(35):8333–8337. doi:10.1021/jp001803b CrossRefGoogle Scholar
  15. Mafune F, Kohno J-Y et al (2003) Formation of stable platinum nanoparticles by laser ablation in water. J Phys Chem B 107(18):4218–4223. doi:10.1021/jp021580k CrossRefGoogle Scholar
  16. Mahfouz R, Cadete Santos Aires FJ et al (2008) Synthesis and physico-chemical characteristics of nanosized particles produced by laser ablation of a nickel target in water. Appl Surf Sci 254(16):5181–5190CrossRefADSGoogle Scholar
  17. Neddersen J, Chumanov G et al (1993) Laser ablation of metals. A new method for preparing SERS active colloids. Appl Spectrosc 47(12):1959. doi:10.1366/0003702934066460 CrossRefADSGoogle Scholar
  18. Prochazka M, Stepanek J et al (1997) Laser ablation: preparation of ‘chemically pure’ Ag colloids for surface-enhanced Raman scattering spectroscopy. J Mol Struct 410–411:213–216. doi:10.1016/S0022-2860(96)09467-7 CrossRefGoogle Scholar
  19. Sakiyama K, Koga K et al (2004) Formation of size-selected Ni/Nio core-shell particles by pulsed laser ablation. J Phys Chem B 108(2):523–529. doi:10.1021/jp035339x CrossRefGoogle Scholar
  20. Sakka T, Iwanaga S et al (2000) Laser ablation at solid-liquid interfaces: an approach from optical emission spectra. J Chem Phys 112(19):8645–8653. doi:10.1063/1.481465 CrossRefADSGoogle Scholar
  21. Sasaki T, Liang C et al (2004) Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions. J Appl Phys A 79:1489–1492ADSGoogle Scholar
  22. Sasaki T, Shimizu Y et al (2006) Preparation of metal oxide-based nanomaterials using nanosecond pulsed laser ablation in liquids. J Photochem Photobiol Chem 182(3):335–341. doi:10.1016/j.jphotochem.2006.05.031 CrossRefGoogle Scholar
  23. Seto T, Koga K et al (2004) Laser synthesis and magnetic properties of monodispersed core-shell nanoparticles. J Appl Phys A 79:1165–1167ADSGoogle Scholar
  24. Sibbald MS, Chumanov G et al (1996) Reduction of cytochrome c by halide-modified, laser-ablated silver colloids. J Phys Chem 100(11):4672. doi:10.1021/jp953248x CrossRefGoogle Scholar
  25. Swihart MT (2003) Vapor-phase synthesis of nanoparticles. Curr Opin Colloid Interface Sci 8(1):127–133. doi:10.1016/S1359-0294(03)00007-4 CrossRefGoogle Scholar
  26. Tartaj P, Del Puerto Morales M et al (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36(13):182–197. doi:10.1088/0022-3727/36/13/202 CrossRefADSGoogle Scholar
  27. Tsuji T, Kakita T et al (2003) Preparation of nano-size particles of silver with femtosecond laser ablation in water. Appl Surf Sci 206(1–4):314–320. doi:10.1016/S0169-4332(02)01230-8 CrossRefADSGoogle Scholar
  28. Willard MA, Kurihara LK et al (2004) Chemically prepared magnetic nanoparticles. Int Mater Rev 49(3–4):125–170. doi:10.1179/095066004225021882 CrossRefGoogle Scholar
  29. Zbroniec L, Martucci A et al (2004) Optical CO gas sensing using nanostructured NiO and NiO/SiO2 nanocomposites fabricated by PLD and sol-gel methods. J Appl Phys A 79(4–6):1303–1305ADSGoogle Scholar
  30. Zbroniec L, Sasaki T et al (2005) Parameter dependence of nickel oxide nanoparticles prepared by pulsed-laser ablation. J Ceram Process Res 6(2):134–137Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sohaib Z. Khan
    • 1
    • 2
  • Yudie Yuan
    • 1
  • Amin Abdolvand
    • 2
  • Marc Schmidt
    • 2
  • Philip Crouse
    • 2
  • Lin Li
    • 2
  • Zhu Liu
    • 1
  • Martin Sharp
    • 3
  • K. G. Watkins
    • 3
  1. 1.Corrosion and Protection Centre, School of MaterialsThe University of ManchesterManchesterUK
  2. 2.Laser Processing Research Centre, School of Mechanical, Aerospace and Civil EngineeringThe University of ManchesterManchesterUK
  3. 3.Laser Engineering Group, Department of EngineeringThe University of LiverpoolLiverpoolUK

Personalised recommendations