Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1375–1382 | Cite as

Cytotoxic evaluation of N-isopropylacrylamide monomers and temperature-sensitive poly(N-isopropylacrylamide) nanoparticles

  • Aniket S. Wadajkar
  • Bhanuprasanth Koppolu
  • Maham Rahimi
  • Kytai T. Nguyen
Research Paper

Abstract

The objective of this research project is to investigate the biocompatibility of N-isopropylacrylamide (NIPAAm) monomers and poly(N-isopropylacrylamide) (PNIPAAm) nanoparticles in vitro. PNIPAAm nanoparticles of different sizes were synthesized and characterized by transmission electron microscopy and dynamic light scattering. Cytotoxicity studies using MTS assays were conducted on fibroblasts, smooth muscle cells, and endothelial cells. In addition, the concentration of NIPAAm monomers remaining on PNIPAAm nanoparticles was determined using bromination and spectrophotometry. The cytotoxicity results did not show a significant difference in cell survival when cells were exposed to different particle sizes (100, 300, and 500 nm). Dose studies showed that all three cell types exposed to 100 nm PNIPAAm nanoparticles at concentrations less than or equal to 5 mg/mL were compatible, while cells exposed to NIPAAm monomers exhibited toxicity even at very low concentrations. We also found that 1 mg/mL concentration of 100 nm PNIPAAm nanoparticles was cytocompatible for 4 days, whereas NIPAAm monomers were cytotoxic after 24 h of exposure. Photomicrographs showed altered morphology in cells exposed to NIPAAm monomers, while cells exposed to PNIPAAm nanoparticles maintained their normal morphology. Finally, a very low concentration of NIPAAm monomers remained on the PNIPAAm nanoparticles after synthesis and dialysis. Our results demonstrate that NIPAAm monomers are cytotoxic, whereas PNIPAAm nanoparticles are compatible at 5 mg/mL concentration or below for fibrobasts, smooth muscle cells, and endothelial cells.

Keywords

N-isopropylacrylamide Cytotoxicity Temperature-sensitive nanoparticles Fibroblasts Smooth muscle cells Endothelial cells Biocompatibility Health effects 

References

  1. Amrite AC, Kompella UB (2007) Nanoparticles & microparticles: particle engineering, cell uptake, in vivo disposition & efficacy. Drug Deliv Technol 7(2):52–56Google Scholar
  2. Braze CS, Peppas NA (1995) Synthesis and characterization of thermo- and chemomechanically responsive poly(N-isopropylacrylamide-eo-methacrylic acid) hydrogels. Macromolecules 28(24):8016–8020. doi:10.1021/ma00128a007 CrossRefADSGoogle Scholar
  3. Dilgimen AS, Mustafaeva Z et al (2001) Water-soluble covalent conjugates of bovine serum albumin with anionic poly(N-isopropyl-acrylamide) and their immunogenicity. Biomaterials 22(17):2383–2392. doi:10.1016/S0142-9612(00)00425-7 PubMedCrossRefGoogle Scholar
  4. Eeckman F, Amighi K et al (2001) Effect of some physiological and non-physiological compounds on the phase transition temperature of thermoresponsive polymers intended for oral controlled-drug delivery. Int J Pharm 222(2):259–270. doi:10.1016/S0378-5173(01)00716-5 PubMedCrossRefGoogle Scholar
  5. Hardas NR, Adam R et al (1999) Alkene determination by bromination and gas chromatography with element-selective atomic plasma spectroscopic detection. J Chromatogr A 844:249–258. doi:10.1016/S0021-9673(99)00358-1 CrossRefGoogle Scholar
  6. Hashimoto K, Sakamoto J et al (1981) Neurotoxicity of acrylamide and related compounds and their effects on male gonads in mice. Arch Toxicol 47(3):179–189. doi:10.1007/BF00368678 PubMedCrossRefGoogle Scholar
  7. Hinrichs WLJ, Schuurmans-Nieuwenbroek NME et al (1999) Thermosensitive polymers as carriers for DNA delivery. J Control Release 60:249–259. doi:10.1016/S0168-3659(99)00075-9 PubMedCrossRefGoogle Scholar
  8. Ito S, Ronbunshu K (1989) Phase transition of aqueous solution of poly(N-alkylacrylamide) derivatives—effects of side chain structure. CSA Illumina 46(7):437–443Google Scholar
  9. Malonne H, Eeckman F et al (2005) Preparation of poly(N-isopropylacrylamide) copolymers and preliminary assessment of their acute and subacute toxicity in mice. Eur J Pharm Biopharm 61(3):188–194. doi:10.1016/j.ejpb.2005.05.007 PubMedCrossRefGoogle Scholar
  10. Masayuki I, Katsuaki O et al (2001) Acceleration of wound contraction and healing with a photocrosslinkable chitosan hydrogel. Wound Repair Regen 9(6):513–521. doi:10.1046/j.1524-475x.2001.00513.x CrossRefGoogle Scholar
  11. Moioli EK, Hong L et al (2006) Sustained release of TGF 3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells. Tissue Eng 12(6):537–546. doi:10.1089/ten.2006.12.537 PubMedCrossRefGoogle Scholar
  12. Prange MM, Hooper HH et al (1989) Thermodynamics of aqueous systems containing hydrophilic polymers or gels. AIChE J 35(5):803–813. doi:10.1002/aic.690350511 CrossRefGoogle Scholar
  13. Ramanan RMK, Chellamuthu P et al (2006) Development of a temperature-sensitive composite hydrogel for drug delivery applications. Biotechnol Prog 22:118–125. doi:10.1021/bp0501367 PubMedCrossRefGoogle Scholar
  14. Schmaljohann D, Oswald J et al (2003) Thermo-responsive PNiPAAm-g-PEG films for controlled cell detachment. Biomacromolecules 4(6):1733–1739. doi:10.1021/bm034160p PubMedCrossRefGoogle Scholar
  15. Takezawa T, Mori Y et al (1990) Cell culture on a thermo-responsive polymer surface. Biotechnology (NY) 8(9):854–856. doi:10.1038/nbt0990-854 CrossRefGoogle Scholar
  16. Tanii H, Hashimoto K (1983) Neurotoxicity of acrylamide and related compounds in rats. Effects on rotarod performance, morphology of nerves and neurotubulin. Arch Toxicol 54(3):203–213. doi:10.1007/BF01239204 PubMedCrossRefGoogle Scholar
  17. Turk M, Dincer S et al (2004) In vitro transfection of HeLa cells with temperature sensitive polycationic copolymers. J Control Release 96(2):325–340. doi:10.1016/j.jconrel.2004.01.013 PubMedCrossRefGoogle Scholar
  18. Vihola H, Laukkanen A et al (2005) Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 26:3055–3064. doi:10.1016/j.biomaterials.2004.09.008 PubMedCrossRefGoogle Scholar
  19. Weng H, Zhou J et al (2004) Tissue responses to thermally-responsive hydrogel nanoparticles. J Biomater Sci Polym Ed 15(9):1167–1180. doi:10.1163/1568562041753106 PubMedCrossRefGoogle Scholar
  20. Yoshiaki I, Tsuchiya T et al (1995) Cytotoxicity of medical materials sterilized with vapour-phase hydrogen peroxide. Biomaterials 16(3):177–183. doi:10.1016/0142-9612(95)92115-M CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Aniket S. Wadajkar
    • 1
    • 2
  • Bhanuprasanth Koppolu
    • 1
    • 2
  • Maham Rahimi
    • 1
    • 2
  • Kytai T. Nguyen
    • 1
    • 2
  1. 1.Biomedical Engineering ProgramUniversity of Texas Southwestern Medical Center at DallasDallasUSA
  2. 2.Department of BioengineeringUniversity of Texas at ArlingtonArlingtonUSA

Personalised recommendations