Journal of Nanoparticle Research

, Volume 11, Issue 3, pp 749–755 | Cite as

Controllable synthesis, characterization, and magnetic properties of nanoscale zerovalent iron with specific high Brunauer–Emmett–Teller surface area

  • Qiliang Wang
  • Sushil Raj Kanel
  • Hosik Park
  • Anna Ryu
  • Heechul Choi
Brief Communication

Abstract

This article reports a novel approach for the controllable synthesis of nanoscale zerovalent iron (NZVI) particles with specific high Brunauer–Emmett–Teller (BET) surface areas. Borohydride reduction is a primary and effective liquid phase reduction method for the synthesis of zerovalent iron nanoparticles. However, previous methods for synthesizing NZVI did not suggest a standard technique for controlling the size of particles during the synthesis process; in addition, previous literature generally reported that NZVI had a BET surface area of <37 m2/g. In this communication, a novel approach for the controllable synthesis of NZVI particles with specific high BET surface areas is presented. As a result, the BET surface areas of the NZVI particles synthesized increased to 47.49 and 62.48 m2/g, and the particle sizes decreased to 5–40 and 3–30 nm. Additionally, the physical and chemical properties of the synthesized NZVI particles were investigated by a series of characterizations, and magnetic analysis indicated that the synthesized NZVI particles had super-paramagnetic properties.

Keywords

Nanoscale zerovalent iron Synthesis Characterization Liquid phase reduction BET surface area Magnetic property 

References

  1. Cao JS, Elliott D, Zhang WX (2005) Perchlorate reduction by nanoscale iron particles. J Nanopart Res 7:499–506. doi:10.1007/s11051-005-4412-x CrossRefGoogle Scholar
  2. Chen SS, Hsu HD, Li CW (2004) A new method to produce nanoscale iron for nitrate removal. J Nanopart Res 6:639–647. doi:10.1007/s11051-004-6672-2 CrossRefGoogle Scholar
  3. DeCaro D, Ely TO, Mari A, Chaudret B, Snoeck E, Respaud M, Broto JM, Fert A (1996) Synthesis, characterization, and magnetic studies of nonagglomerated zerovalent iron particles. Unexpected size dependence of the structure. Chem Mater 8:1987–1991. doi:10.1021/cm950599f CrossRefGoogle Scholar
  4. Giasuddin ABM, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41:2022–2027. doi:10.1021/es0616534 PubMedCrossRefGoogle Scholar
  5. Glavee GN, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1995) Chemistry of borohydride reduction of iron(II) and iron(III) ions in aqueous and nonaqueous media. Formation of nanoscale Fe, FeB, and Fe2B powders. Inorg Chem 34:28–35. doi:10.1021/ic00105a009 CrossRefGoogle Scholar
  6. Joo SH, Feitz AJ, Waite TD (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol 38:2242–2247. doi:10.1021/es035157g PubMedCrossRefGoogle Scholar
  7. Jung H, Park H, Kim J, Lee JH, Hur HG, Myung NV, Choi H (2007) Preparation of biotic and abiotic iron oxide nanoparticles (IOnPs) and their properties and applications in heterogeneous catalytic oxidation. Environ Sci Technol 41:4741–4747. doi:10.1021/es0702768 PubMedCrossRefGoogle Scholar
  8. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39:1291–1298. doi:10.1021/es048991u PubMedCrossRefGoogle Scholar
  9. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. doi:10.1021/es0520924 PubMedCrossRefGoogle Scholar
  10. Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22:4638–4642. doi:10.1021/la060057k PubMedCrossRefGoogle Scholar
  11. Liu YQ, Lowry GV (2006) Effect of particle age (Fe–O content) and solution pH on NZVI reactivity: H-2 evolution and TCE dechlorination. Environ Sci Technol 40:6085–6090. doi:10.1021/es060685o PubMedCrossRefGoogle Scholar
  12. Liu Y, Choi H, Dionysiou D, Lowry GV (2005) Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chem Mater 17:5315–5322. doi:10.1021/cm0511217 CrossRefGoogle Scholar
  13. Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39:1221–1230. doi:10.1021/es049190u PubMedCrossRefGoogle Scholar
  14. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569. doi:10.1021/es9911420 CrossRefGoogle Scholar
  15. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193. doi:10.1021/cm0218108 CrossRefGoogle Scholar
  16. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619. doi:10.1351/pac198557040603 CrossRefGoogle Scholar
  17. Suslick KS, Choe SB, Cichowlas AA, Grinstaff MW (1991) Sonochemical synthesis of amorphous iron. Nature 353:414–416. doi:10.1038/353414a0 CrossRefADSGoogle Scholar
  18. Van Wonterghem J, Moerup S (1988) Preparation of ultrafine amorphous iron-carbon alloy particles on a carbon support. J Phys Chem 92:1013–1016. doi:10.1021/j100316a004 CrossRefGoogle Scholar
  19. Vanwonterghem J, Morup S, Koch CJW, Charles SW, Wells S (1986) Formation of ultra-fine amorphous alloy particles by reduction in aqueous-solution. Nature 322:622–623. doi:10.1038/322622a0 CrossRefADSGoogle Scholar
  20. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156. doi:10.1021/es970039c CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Qiliang Wang
    • 1
  • Sushil Raj Kanel
    • 2
  • Hosik Park
    • 1
  • Anna Ryu
    • 1
  • Heechul Choi
    • 1
  1. 1.Department of Environmental Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuThe Republic of Korea
  2. 2.Department of Civil EngineeringAuburn UniversityAuburnUSA

Personalised recommendations