Skip to main content
Log in

Crystal structure mediates mode of cell death in TiO2 nanotoxicity

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Braydich-Stolle LK, Lucas B, Schrand A, Murdock RC, Lee T, Schlager J, Hussain SM, Hofmann MC (2008) Silver nanoparticles disrupt GDNF signaling in spermatogonial stem cells independent of nanoparticle size and coating (submitted)

  • Bucher J, Masten S, Moudgil B, Powers K, Roberts S, Walker N (2004) Developing experimental approaches for the evaluation of toxicological interactions of nanoscale materials. Final workshop report, 3–4 November 2004, University of Florida, Gainesville, FL, pp 1–37

  • Dharmarajan AM, Hisheh S, Singh B, Parkinson S, Tilly KI, Tilly JL (1999) Antioxidants mimic the ability of chorionic gonadotropin to suppress apoptosis in the rabbit corpus luteum in vitro: a novel role for superoxide dismutase in regulating bax expression. Endocrinology 140:2555–2561. doi:10.1210/en.140.6.2555

    Article  PubMed  CAS  Google Scholar 

  • Ellsworth DK, Verhurst D, Spitler TM, Sabacky BJ (2000) Titanium nanoparticles move to the marketplace. Chem Innov 30(12):30–35

    Google Scholar 

  • Erkkilä K, Hirvonen V, Wuokko E, Parvinen M, Dunkel L (1998) N-acetyl-L-cysteine inhibits apoptosis in human male germ cells in vitro. J Clin Endocrinol Metab 83:2523–2531. doi:10.1210/jc.83.7.2523

    Article  PubMed  Google Scholar 

  • Galis ZS, Asanuma K, Godin D, Meng X (1998) N-acetyl-cysteine decreases the matrix-degrading capacity of macrophage-derived foam cells: new target for antioxidant therapy? Circulation 97:2382–2383

    Google Scholar 

  • Gómez-Lechón MJ, O’Connor E, Castell JV, Jover R (2002) Sensitive markers used to identify compounds that trigger apoptosis in cultured hepatocytes. Toxicol Sci 65(2):299–308. doi:10.1093/toxsci/65.2.299

    Article  PubMed  Google Scholar 

  • Grassian VH, O’shaughnessy PT, Adamcakova-Dodd A, Pettibone JM, Thorne PS (2007) Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm. Environ Health Perspect 115(3):397–402

    Article  PubMed  CAS  Google Scholar 

  • Gurr JR, Wang AS, Chen CH, Jan KY (2005) Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology 213(1–2):66–73. doi:10.1016/j.tox.2005.05.007

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Chen DR, Biswas P (2007a) Synthesis of nanoparticles in a Flame Aerosol Reactor (FLAR) with independent and strict control of their size, crystal phase and morphology. Nanotechnology 18:285603. doi:10.1088/0957-4484/18/28/285603

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Elder E, Gelein R, Mercer P, Biswas P (2007b) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42

    Article  CAS  Google Scholar 

  • Lennon S, Martin S, Cotter T (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24(2):203–214. doi:10.1111/j.1365-2184.1991.tb01150.x

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Li J, Qiu X, Burda C (2006) Novel TiO2 nanocatalysts for wastewater purification: tapping energy from the sun. Water Sci Technol 54(8):47–54. doi:10.2166/wst.2006.733

    Article  PubMed  CAS  Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40(14):4346–4352. doi:10.1021/es060589n

    Article  PubMed  CAS  Google Scholar 

  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM (2008) Characterization of nanomaterial dispersions in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci; Epub ahead of print

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627. doi:10.1126/science.1114397

    Article  PubMed  ADS  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005a) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D et al (2005b) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8. doi:10.1186/1743-8977-2-8

    Article  PubMed  CAS  Google Scholar 

  • Oberdörster G (2005c) Inhaled Nano-sized particles: potential effects and mechanisms. Compute-renu du first international symposium on occupational health implications of nanomaterials, 12–14 October 2004, Buxton, Great Britain, pp 65–71. Edited by the Health and Safety Executive, Great-Britain and the National Institute for Occupational Safety and Health, USA, July 2005

  • Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61(5):442–447. doi:10.1136/oem.2003.008227

    Article  PubMed  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu Y, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185. doi:10.1093/toxsci/kfj197

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208. doi:10.2174/0929867053764635

    Article  PubMed  CAS  Google Scholar 

  • Venkatachari P, Hopke PK, Grover BD, Eatough DJ (2005) Measurement of particle-bound reactive oxygen species in Rubidoux aerosols. J Atmos Chem 50:49–58. doi:10.1007/s10874-005-1662-z

    Article  CAS  Google Scholar 

  • Wang H, Joseph JA (1999) Quantitating cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616. doi:10.1016/S0891-5849(99)00107-0

    Article  PubMed  CAS  Google Scholar 

  • Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL (2006) Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 91(1):227–236. doi:10.1093/toxsci/kfj140

    Article  PubMed  CAS  Google Scholar 

  • Wold A (1993) Photocatalytic properties of TiO2. Chem Mater 5:280–283. doi:10.1021/cm00027a008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Col J. Riddle for his strong support and encouragement for this research. They would also like to thank Dr. Amanda Schrand, Mr. Michael Moulton and Ms. Katherine Szczublewski for their technical assistance. Dr. Braydich-Stolle is funded by a Post-Doctoral Fellowship through the National Research Council. Ms. Nicole Schaeublin is supported by the Biosciences and Protection Division, Human Effectiveness Directorate, Air Force Research Laboratory through the Henry Jackson Foundation. Mr. Richard Murdock is funded by the Biosciences and Protection Division, Human Effectiveness Directorate, Air Force Research Laboratory under the Oak Ridge Institute for Science and Education. This work was supported by the Air Force Office of Scientific Research (AFOSR) Project (JON # 2312A214). Dr. Pratim Biswas and Mr. Jingkun Jiang acknowledge support from the U.S. Department of Defense (AFOSR) MURI Grant (FA9550-04-1-0430).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber M. Hussain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braydich-Stolle, L.K., Schaeublin, N.M., Murdock, R.C. et al. Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11, 1361–1374 (2009). https://doi.org/10.1007/s11051-008-9523-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9523-8

Keywords

Navigation