Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1501–1507 | Cite as

Comments on the effect of liquid layering on the thermal conductivity of nanofluids

  • Elham Doroodchi
  • Thomas Michael Evans
  • Behdad Moghtaderi
Brief Communication

Abstract

This article provides critical examinations of two mathematical models that have been developed in recent years to describe the impact of nano-layering on the enhancement of the effective thermal conductivity of nanofluids. Discrepancy between the two models is found to be an artefact of an incorrect derivation used in one of the models. With correct formulation, both models predict effective thermal conductivity enhancements that are not significantly greater than those predicted by classical Maxwell theory. This study indicates that nano-layering by itself is unable to account for the effective thermal conductivity enhancements observed in nanofluids.

Keywords

Nanofluids Thermal conductivity Conductivity enhancement Fluid layering Nanoparticles Modeling and simulation 

Nomenclature

k

Thermal conductivity

a

Nanoparticle radius

r

Radial position in spherical coordinates

h

Nanolayer thickness

V

Volume

\( \hat{Z} \)

Z-axis unit vector

Greek symbols

θ

Polar angle in spherical coordinates

ω

Azimuthal angle in spherical coordinates

ϕ

Volume fraction

Subscripts

p

Nanoparticle

lr

Nanolayer

f

Base liquid

References

  1. Allen DJ (2007) Enhanced thermal conductivity of nanofluids. Final year thesis supervised by Prof B Moghtaderi, Chemical Engineering. The University of Newcastle, AustraliaGoogle Scholar
  2. Das SK, Putra N, Thiesen P, Roetzel W (2003) Temperature dependence of thermal conductivity enhancement for nanofluids. J Heat Transf 125:567–574. doi:10.1115/1.1571080 CrossRefGoogle Scholar
  3. Eastman JA, Choi US, Li S, Thompson LJ, Lee S (1997) In: Komarnenl S, Parker JC, Wollenberger HJ (eds) Nanocrystalline and nanocomposite materials II, vol 457. Materials Research Society, Pittsburgh, PA, pp 3–11 Google Scholar
  4. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78(6):718–720. doi:10.1063/1.1341218 CrossRefADSGoogle Scholar
  5. Kumar DH, Patel HE, Kumar VRR, Sundararajan T, Pradeep T, Das SK (2004) Model for heat conduction in nanofluids. Phys Rev Lett 93(14):144301. doi:10.1103/PhysRevLett.93.144301 PubMedCrossRefADSGoogle Scholar
  6. Lee S, Choi SUS, Eastman JA (1999) Measuring thermal conductivity of fluids containing oxide nanoparticles. J Heat Transf 121:280–289. doi:10.1115/1.2825978 CrossRefGoogle Scholar
  7. Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8(2):245–254. doi:10.1007/s11051-005-9018-9 CrossRefGoogle Scholar
  8. Maxwell JC (1891) A treatise on electricity and magnetism, 3rd edn. Clarendon Press, Oxford, UKGoogle Scholar
  9. Xie H, Fujii M, Zhang X (2005) Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. Int J Heat Mass Transf 48(14):2926–2932. doi:10.1016/j.ijheatmasstransfer.2004.10.040 CrossRefGoogle Scholar
  10. Xue L, Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2004) Effect of liquid layering at the liquid–solid interface on thermal transport. Int. J Heat Mass Transf 47(19–20):4277–4284. doi:10.1016/j.ijheatmasstransfer.2004.05.016 MATHCrossRefGoogle Scholar
  11. Xue Q, Xu W (2005) A model of thermal conductivity of nanofluids with interfacial shells. Mater Chem Phys 98(2–3):298–301. doi:10.1016/j.matchemphys.2004.05.029 CrossRefADSGoogle Scholar
  12. Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5(1–2):167–171. doi:10.1023/A:1024438603801 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Elham Doroodchi
    • 1
  • Thomas Michael Evans
    • 2
  • Behdad Moghtaderi
    • 3
  1. 1.Centre for Advanced Particle Processing, Chemical Engineering, Faculty of Engineering & Built EnvironmentThe University of NewcastleCallaghanAustralia
  2. 2.Faculty of ScienceThe Australian National UniversityCanberraAustralia
  3. 3.Centre for Energy, Chemical Engineering, Faculty of Engineering & Built EnvironmentThe University of NewcastleCallaghanAustralia

Personalised recommendations