Journal of Nanoparticle Research

, Volume 11, Issue 6, pp 1349–1360 | Cite as

Well-crystallized zinc oxide quantum dots with narrow size distribution

  • Keigo Suzuki
  • Masashi Inoguchi
  • Keisuke Kageyama
  • Hiroshi Takagi
  • Yukio Sakabe
Research Paper


In this study, pulsed laser ablation, online annealing, and following size classification using a differential mobility analyzer (DMA) were employed to fabricate quantum dots (QDs) of zinc oxide (ZnO). The irregularly shaped ZnO particles were obtained at annealing temperature less than 873 K, which gradually transformed into spherical QDs with increasing the annealing temperature. Finally, ZnO QDs with narrow size distribution having spherical shapes were successfully obtained at temperatures above 1173 K under the DMA classification at a nominal size of 10 nm. TEM observation demonstrated that the ZnO QDs obtained by this process were well-crystallized single crystallites with a wurtzite structure. Further, ZnO QDs with average sizes in the range of 4.8–8.1 nm were successfully fabricated by reducing the specified sizes of DMA. These features of the fabricated ZnO QDs are favorable for investigation of intrinsic quantum size effect in ZnO.


Zinc oxide Quantum dot Laser ablation Differential mobility analyzer Particle synthesis 


  1. Borgohain K, Mahamuni S (1998) Luminescence behavior of chemically grown ZnO quantum dots. Semicond Sci Technol 13:1154–1157. doi:10.1088/0268-1242/13/10/017 CrossRefADSGoogle Scholar
  2. Chang HJ, Lu CZ, Wang Y, Son CS, Kim SI, Kim YH et al (2004) Optical properties of ZnO nanocrystals synthesized by using sol-gel method. J Korean Phys Soc 45:959–962Google Scholar
  3. Chatterjee A, Shen CH, Ganguly A, Chen LC, Hsu CW, Hwang JY et al (2004) Strong room-temperature UV emission of nanocrystalline ZnO films derived from a polymeric solution. Chem Phys Lett 391:278–282. doi:10.1016/j.cplett.2004.05.021 CrossRefADSGoogle Scholar
  4. Chen DR, Pui DYH (1997) Numerical modeling of the performance of differential mobility analyzers for nanometer aerosol measurements. J Aerosol Sci 28:985–1004. doi:10.1016/S0021-8502(97)00004-9 CrossRefGoogle Scholar
  5. Chen DR, Pui DYH, Hummes D, Fissan H, Quant FR, Sem GJ (1998) Design and evaluation of a nanometer aerosol differential mobility analyzer (Nano-DMA). J Aerosol Sci 29:497–509. doi:10.1016/S0021-8502(97)10018-0 CrossRefGoogle Scholar
  6. Chik H, Liang J, Cloutier SG, Kouklin N, Xu JM (2004) Periodic array of uniform ZnO nanorods by second-order self-assembly. Appl Phys Lett 84:3376–3378. doi:10.1063/1.1728298 CrossRefADSGoogle Scholar
  7. Deppert K, Bovin JO, Malm JO, Samuelson L (1996) A new method to fabricate size-selected compound semiconductor nanocrystals: aerotaxy. J Cryst Growth 169:13–19. doi:10.1016/0022-0248(96)00342-9 CrossRefADSGoogle Scholar
  8. Eom SH, Yu YM, Choi YD, Kim CS (2005) Optical characterization of ZnO whiskers grown without catalyst by hot wall epitaxy method. J Cryst Growth 284:166–171. doi:10.1016/j.jcrysgro.2005.07.006 CrossRefADSGoogle Scholar
  9. Fah CP, Xue J, Wang J (2002) Nanosized zinc-oxide particles derived from mechanical activation of Zn5(NO3)2(OH)8 · 2H2O in sodium chloride. J Am Ceram Soc 85:273–275CrossRefGoogle Scholar
  10. Flagan RC (1998) History of electrical aerosol measurements. Aerosol Sci Technol 28:301–380. doi:10.1080/02786829808965530 CrossRefGoogle Scholar
  11. Fuchs NA (1963) On the stationary charge distribution on aerosol particles in a bipolar ionic atmosphere. Geofis Pura Appl 56:185–193. doi:10.1007/BF01993343 CrossRefADSGoogle Scholar
  12. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W et al (2000a) Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem Mater 12:2268–2274. doi:10.1021/cm9907817 CrossRefGoogle Scholar
  13. Guo L, Yang S, Yang P, Yu P, Wang J, Ge W et al (2000b) Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl Phys Lett 76:2901–2903. doi:10.1063/1.126511 CrossRefADSGoogle Scholar
  14. Hirasawa M, Orii T, Seto T (2005) Synthesis of visible-light emitting Si nanoparticles by laser nano-prototyping. J Aerosol Res 20:103–107Google Scholar
  15. Katagiri T, Seol KS, Takeuchi K, Ohki Y (2004) Crystallization of monodispersed lead zirconate titanate nanoparticles produced by laser ablation. Jpn J Appl Phys 43:4419–4423. doi:10.1143/JJAP.43.4419 CrossRefADSGoogle Scholar
  16. Kennedy MK, Kruis FE, Fissan H, Mehta BR, Stappert S, Dumpich G (2003) Tailored nanoparticles films from monosized tin oxide nanocrystals: particle synthesis, film formation, and size-dependent gas-sensing properties. J Appl Phys 93:551–560. doi:10.1063/1.1525855 CrossRefADSGoogle Scholar
  17. Kim KK, Koguchi N, Ok YW, Seong TY, Park SJ (2004) Fabrication of ZnO quantum dots embedded in an amorphous oxide layer. Appl Phys Lett 84:3810–3812. doi:10.1063/1.1741030 CrossRefADSGoogle Scholar
  18. Knutson EO, Whitby KT (1975) Aerosol classification by electric mobility: apparatus, theory, and application. J Aerosol Sci 6:443–451. doi:10.1016/0021-8502(75)90060-9 CrossRefGoogle Scholar
  19. Lu JG, Ye ZZ, Huang JY, Zhu LP, Zhao BH, Wang ZL et al (2006a) ZnO quantum dots synthesized by a vapor phase transport process. Appl Phys Lett 88:063110. doi:10.1063/1.2172154 CrossRefADSGoogle Scholar
  20. Lu JG, Ye ZZ, Zhang YZ, Liang QL, Fujita SZ, Wang ZL (2006b) Self-assembled ZnO quantum dots with tunable optical properties. Appl Phys Lett 89:023122. doi:10.1063/1.2221892 CrossRefADSGoogle Scholar
  21. Mahamuni S, Borgohain K, Bendre BS, Leppert VJ, Risbud SH (1999) Spectroscopic and structural characterization of electrochemically grown ZnO quantum dots. J Appl Phys 85:2861–2865. doi:10.1063/1.369049 CrossRefADSGoogle Scholar
  22. Nakaso K, Fujimoto T, Seto T, Shimada M, Okuyama K (2001) Size distribution change of titania nano-particle agglomerates generated by gas phase reaction, agglomeration, and sintering. Aerosol Sci Technol 35:929–947. doi:10.1080/02786820126857 CrossRefGoogle Scholar
  23. Newton MC, Firth S, Matsuura T, Warburton PA (2006) Synthesis and characterization of zinc oxide tetrapod nanocrystals. J Phys 26:251–255. doi:10.1088/1742-6596/26/1/060 Google Scholar
  24. Park YS, Reynolds DC (1967) Growth of ZnO single crystals. J Appl Phys 38:756–760. doi:10.1063/1.1709407 CrossRefADSGoogle Scholar
  25. Polarz S, Roy A, Merz M, Halm S, Schroder D, Schneider L et al (2005) Chemical vapor synthesis of size-selected zinc oxide nanoparticles. Small 1:540–552. doi:10.1002/smll.200400085 PubMedCrossRefGoogle Scholar
  26. Seol KS, Tsutatani Y, Camata RP, Yabumoto J, Isomura S, Okada Y et al (2000) A differential mobility analyzer and a faraday cup electrometer for operation at 200–930 Pa pressure. J Aerosol Sci 31:1389–1395. doi:10.1016/S0021-8502(00)00037-9 CrossRefGoogle Scholar
  27. Seol KS, Tsutatani Y, Fujimoto T, Okada Y, Nagamoto H (2001) New in situ measurement method for nanoparticles formed in a radio frequency plasma-enhanced chemical vapor deposition. J Vac Sci Technol B 19:1998–2000. doi:10.1116/1.1404979 CrossRefGoogle Scholar
  28. Seol KS, Tomita S, Takeuchi K, Miyagawa T, Katagiri T, Ohki Y (2002a) Gas-phase production of monodisperse lead titanate nanoparticles. Appl Phys Lett 81:1893–1895. doi:10.1063/1.1505744 CrossRefADSGoogle Scholar
  29. Seol KS, Takeuchi K, Miyagawa T, Ohki Y (2002b) Characteristics of nanoparticles formed during pulsed laser ablation of SrBi2Ta2O9. Jpn J Appl Phys 41:5654–5658. doi:10.1143/JJAP.41.5654 CrossRefADSGoogle Scholar
  30. Seol KS, Ohki Y, Takeuchi K (2004) Recent development of differential mobility analyzer for size-classification of nanoparticles and their applications to nanotechnologies. KIEE Int Trans EA 4C:39–44Google Scholar
  31. Seto T, Shimada M, Okuyama K (1995) Evaluation of sintering of nanometer-sized titania using aerosol method. Aerosol Sci Technol 23:183–200. doi:10.1080/02786829508965303 CrossRefGoogle Scholar
  32. Suzuki N, Makino T, Yamada Y, Yoshita T, Seto T (2001) Monodispersed, nonagglomerated silicon nanocrystallites. Appl Phys Lett 78:2043–2045. doi:10.1063/1.1360236 CrossRefADSGoogle Scholar
  33. Suzuki K, Kageyama K, Takagi H, Sakabe Y, Takeuchi K (2008) Fabrication of monodispersed barium titanate nanoparticles with narrow size distribution. J Am Ceram Soc 75:1721–1724. doi:10.1111/j.1551-2916.2008.02345.x CrossRefGoogle Scholar
  34. Ueda M, Kim SW, Fujita S, Fujita S (2004) Focused ion beam patterning for fabrication of periodical two-dimensional zinc oxide nanodot arrays. Jpn J Appl Phys 43:L652–L654. doi:10.1143/JJAP.43.L652 CrossRefADSGoogle Scholar
  35. Wiedensohler A (1988) An approximation of the bipolar charge distribution for particles in the submicron size range. J Aerosol Sci 19:387–389. doi:10.1016/0021-8502(88)90278-9 CrossRefGoogle Scholar
  36. Yadav HK, Sreenivas K, Gupta V, Singh SP, Katiyar RS (2007) Effect of surface defects on the visible emission from ZnO nanoparticles. J Mater Res 22:2404–2409. doi:10.1557/jmr.2007.0321 CrossRefADSGoogle Scholar
  37. Yu WD, Li XM, Gao XD (2004) Self-catalytic synthesis and photoluminescence of ZnO nanostructures on ZnO nanocrystal substrates. Appl Phys Lett 84:2658–2660. doi:10.1063/1.1695097 CrossRefADSGoogle Scholar
  38. Zhang BP, Liu CY, Segawa Y, Kashiwaba Y, Haga K (2005) Free excitonic transition of zinc oxide nanocrystalline films formed on amorphous substrates by metalorganic chemical vapor deposition. Thin Solid Films 474:165–168. doi:10.1016/j.tsf.2004.08.123 CrossRefADSGoogle Scholar
  39. Zhao D, Liu Y, Shen D, Lu Y, Zhang L, Fan X (2003) Structure and photoluminescence properties of ZnO microrods. J Appl Phys 94:5605–5608. doi:10.1063/1.1615703 CrossRefADSGoogle Scholar
  40. Zhou H, Alves H, Hofmann DM, Kriegseis W, Meyer BK, Kaczmarczyk G et al (2002) Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure. Appl Phys Lett 80:210–212. doi:10.1063/1.1432763 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Keigo Suzuki
    • 1
  • Masashi Inoguchi
    • 1
  • Keisuke Kageyama
    • 1
  • Hiroshi Takagi
    • 1
  • Yukio Sakabe
    • 1
  1. 1.Murata Manufacturing Co. Ltd.KyotoJapan

Personalised recommendations