Skip to main content
Log in

Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ordered arrays of carbon nanotubes (CNT) have been coated by Ni nanoparticles and Ni thin films by using the chronoamperometry technique for nickel reduction. Two different kinds of nanotube arrays have been used: aligned bundles of CNT grown on Si substrates by chemical vapour deposition (CVD) and networks of CNT bundles positioned via a dielectrophoretic post-synthesis process between the electrodes of a multifinger device. The morphology and structure of the Ni-coated CNT bundles have been characterized by field emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). By changing the parameters of the electrochemical process, it is possible to modulate the morphological characteristics of the Ni deposits, which can be obtained in form of nanoparticles uniformly distributed along the whole length of the CNT bundles or of Ni thin films. A qualitative study of the nucleation and growth mechanism of Ni onto CNT has been performed using the theoretical model for diffusion-controlled electrocrystallization, and a correlation between growth mechanism and samples morphology is presented and discussed. The possibility to maintain the architecture of the pristine nanotube deposits after the Ni coating process opens new perspectives for integration of CNT/Ni systems in magnetic and spintronics devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abyaneh MY, Fleischmann M (1981) The electrocrystallisation of nickel. Part II. Comparison of models with the experimental data. J Electroanal Chem 119(1):197–208

    Article  CAS  Google Scholar 

  • Abyaneh MY, Fleischmann M (2002a) Extracting nucleation rates from current-time transients: comments on the criticisms of Fletcher on three papers published in this issue. J Electroanal Chem 530(1–2):108–118

    Article  CAS  Google Scholar 

  • Abyaneh MY, Fleischmann M (2002b) Extracting nucleation rates from current-time transients: Further comments. J Electroanal Chem 530(1–2):123–125

    Article  CAS  Google Scholar 

  • Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38(3):363–372

    Article  CAS  Google Scholar 

  • Arai S, Endo M, Kaneko N (2004) Ni-deposited multi-walled carbon nanotubes by electrodeposition. Carbon 42(3):641–644

    Article  CAS  Google Scholar 

  • Ayala P, Freire FL Jr, Gu L, Smith DJ, Solórzano IG, Macedo DW, Sande JBV, Terrones H, Rodriguez-Manzo J, Terrones M (2006) Decorating carbon nanotubes with nanostructured nickel particles via chemical methods. Chem Phys Lett 431(1–3):104–109

    Article  ADS  CAS  Google Scholar 

  • Bittencourt C, Felten A, Ghijsen J, Pireaux JJ, Drube W, Erni R, Van Tendeloo G (2007) Decorating carbon nanotubes with nickel nanoparticles. Chem Phys Lett 436(4–6):368–372

    Article  ADS  CAS  Google Scholar 

  • Budevski E, Staikov G, Lorenz WJ (1996) Electrochemical phase formation and growth: an introduction to the initial stages of metal deposition. Wiley-VCH, Verlag GmbH, Weinheim

    Google Scholar 

  • Chen XH, Cheng FQ, Li SL, Zhou LP, Li DY (2002) Electrodeposited nickel composites containing carbon nanotubes. Surf Coat Technol 155(2–3):274–278

    Article  CAS  Google Scholar 

  • Chen XH, Chen CS, Xiao HN, Cheng FQ, Zhang G, Yi GJ (2005) Corrosion behavior of carbon nanotubes-Ni composite coating. Surf Coat Technol 191(2–3):351–356

    Article  CAS  Google Scholar 

  • Cheng J, Zhang X, Ye Y (2006) Synthesis of nickel nanoparticles and carbon encapsulated nickel nanoparticles supported on carbon nanotubes. J Solid State Chem 179(1):91–95

    Article  ADS  CAS  Google Scholar 

  • Deo RP, Lawrence NS, Wang J (2004) Electrochemical detection of amino acids at carbon nanotube and nickel-carbon nanotube modified electrodes. Analyst 129(11):1076–1081

    Article  PubMed  ADS  CAS  Google Scholar 

  • Fan Y, Goldsmith BR, Collins PG (2005) Identifying and counting point defects in carbon nanotubes. Nat Mater 4(12):906–911

    Article  PubMed  ADS  CAS  Google Scholar 

  • Fletcher S (2002a) Extracting nucleation rates from current-time transients. Comments on three papers by Abyaneh and Fleischmann published in this issue. J Electroanal Chem 530(1–2):105–107

    Article  CAS  Google Scholar 

  • Fletcher S (2002b) Extracting nucleation rates from current-time transients. Concluding remarks. J Electroanal Chem 530(1–2):119–122

    Article  CAS  Google Scholar 

  • Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549(suppl):1–12

    Article  CAS  Google Scholar 

  • Jin GP, Ding YF, Zheng PP (2007) Electrodeposition of nickel nanoparticles on functional MWCNT surfaces for ethanol oxidation. J Power Sources 166(1):80–86

    Article  CAS  Google Scholar 

  • Krupke R, Hennrich F, Löhneysen H, Kappes MM (2003) Separation of metallic from semiconducting single-walled carbon nanotubes. Science 301(5631):344–347

    Article  PubMed  ADS  CAS  Google Scholar 

  • Mann D, Javey A, Kong J, Wang Q, Dai H (2003) Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett 3(11):1541–1544

    Article  ADS  CAS  Google Scholar 

  • Orlanducci S, Sessa V, Terranova ML, Rossi M, Manno D (2003) Aligned arrays of carbon nanotubes: modulation of orientation and selected-area growth. Chem Phys Lett 367(1–2):109–115

    Article  ADS  CAS  Google Scholar 

  • Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Card 4-850

  • Scharifker BR, Hills GJ (1981) Electrochemical kinetics at microscopically small electrodes. J Electroanal Chem 130:81–97

    CAS  Google Scholar 

  • Scharifker BR, Hills GJ (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889

    Article  CAS  Google Scholar 

  • Shi L, Sun CF, Gao P, Zhou F, Liu WM (2006) Electrodeposition and characterization of Ni–Co–carbon nanotubes composite coatings. Surf Coat Technol 200(16–17):4870–4875

    Article  CAS  Google Scholar 

  • Terranova ML, Piccirillo S, Sessa V, Rossi M, Cappuccio G (1999) A new CVD route for the synthesis of composite diamond-based materials. Adv Mater 11(8):101–105

    Google Scholar 

  • Terranova ML, Piccirillo S, Sessa V, Sbornicchia P, Rossi M, Botti S, Manno D (2000) Growth of single-walled carbon nanotubes by a novel technique using nanosized graphite as carbon source. Chem Phys Lett 327(5–6):284–290

    Article  ADS  CAS  Google Scholar 

  • Terranova ML, Lucci M, Orlanducci S, Tamburri E, Sessa V, Reale A, Di Carlo A (2007) Carbon nanotubes for gas detection: materials preparation and device assembly. J Phys Condens Matter 19(22):1–14; art no 225004

    Article  Google Scholar 

  • Tersoff J (2003) A barrier falls. Nature 424(6949):622–623

    Article  PubMed  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Tamburri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamburri, E., Toschi, F., Guglielmotti, V. et al. Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes. J Nanopart Res 11, 1311–1319 (2009). https://doi.org/10.1007/s11051-008-9520-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9520-y

Keywords

Navigation